@article{SIGMA_2009_5_a45,
author = {Christiane Quesne},
title = {Point {Canonical} {Transformation} versus {Deformed} {Shape} {Invariance} for {Position-Dependent} {Mass} {Schr\"odinger} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a45/}
}
TY - JOUR AU - Christiane Quesne TI - Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a45/ LA - en ID - SIGMA_2009_5_a45 ER -
%0 Journal Article %A Christiane Quesne %T Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a45/ %G en %F SIGMA_2009_5_a45
Christiane Quesne. Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a45/
[1] Ring P., Schuck P., The nuclear many-body problem, Texts and Monographs in Physics, Springer-Verlag, New York – Berlin, 1980 | MR
[2] Luttinger J. M., Kohn W., “Motion of electrons and holes in perturbed periodic fields”, Phys. Rev., 97 (1955), 869–883 | DOI | Zbl
[3] Harrison P., Quantum wells, wires and dots, Wiley, Chichester, 1999
[4] Arias de Saavedra F., Boronat J., Polls A., Fabrocini A., “Effective mass of one $^4$He atom in liquid $^3$He”, Phys. Rev. B, 50 (1994), 4248–4251 ; cond-mat/9403075 | DOI
[5] Weisbuch C., Vinter B., Quantum semiconductor heterostructures, Academic, New York, 1997
[6] Chamel N., “Effective mass of free neutrons in neutron star crust”, Nuclear Phys. A, 773 (2006), 263–278 ; nucl-th/0512034 | DOI
[7] Quesne C., Tkachuk V. M., “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37 (2004), 4267–4281 ; math-ph/0403047 | DOI | MR | Zbl
[8] Infeld I., Schild A., “A note on the Kepler problem in a space of constant negative curvature”, Phys. Rev., 67 (1945), 121–122 | DOI | MR | Zbl
[9] Cariñena J. F., Rañada M. F., Santander M., “A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour”, Ann. Physics, 322 (2007), 434–459 ; math-ph/0604008 | DOI | MR | Zbl
[10] Bagchi B., Quesne C., Roychoudhury R., “Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonians in a perturbative framework”, J. Phys. A: Math. Gen., 39 (2006), L127–L134 ; quant-ph/0511182 | DOI | MR | Zbl
[11] Bagchi B., Banerjee A., Quesne C., “$\mathcal{PT}$-symmetric quartic anharmonic oscillator and position-dependent mass in a perturbative approach”, Czech. J. Phys., 56 (2006), 893–898 ; quant-ph/0606012 | DOI | MR | Zbl
[12] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[13] von Roos O., “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27 (1983), 7547–7552 | DOI
[14] Gritsev V. V., Kurochkin Yu. A., “Model of excitations in quantum dots based on quantum mechanics in spaces of constant curvature”, Phys. Rev. B, 64 (2001), 035308, 9 pp., ages | DOI
[15] Bagchi B., Banerjee A., Quesne C., Tkachuk V. M., “Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass”, J. Phys. A: Math. Gen., 38 (2005), 2929–2945 ; quant-ph/0412016 | DOI | MR | Zbl
[16] Quesne C., “Oscillator–Morse–Coulomb mappings and algebras for constant or position-dependent mass”, J. Math. Phys., 49 (2008), 022106, 15 pp., ages ; arXiv:0712.1965 | DOI | MR | Zbl
[17] Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; hep-th/9405029 | DOI | MR
[18] Junker G., Supersymmetric methods in quantum and statistical physics, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996 | MR
[19] Bagchi B., Supersymmetry in quantum and classical physics, Chapman and Hall/CRC, Boca Raton, FL, 2000
[20] Spiridonov V., “Exactly solvable potentials and quantum algebras”, Phys. Rev. Lett., 69 (1992), 398–401 ; hep-th/9112075 | DOI | MR | Zbl
[21] Spiridonov V., “Deformed conformal and supersymmetric quantum mechanics”, Modern Phys. Lett. A, 7 (1992), 1241–1251 ; hep-th/9202013 | DOI | MR | Zbl
[22] Khare A., Sukhatme U. P., “New shape-invariant potentials in supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 26 (1993), L901–L904 ; hep-th/9212147 | DOI | MR | Zbl
[23] Barclay D. T., Dutt R., Gangopadhyaya A., Khare A., Pagnamenta A., Sukhatme U., “New exactly solvable Hamiltonians: shape invariance and self-similarity”, Phys. Rev. A, 48 (1993), 2786–2797 ; hep-ph/9304313 | DOI | MR
[24] Sukhatme U. P., Rasinariu C., Khare A., “Cyclic shape invariant potentials”, Phys. Lett. A, 234 (1997), 401–409 ; hep-ph/9706282 | DOI | MR | Zbl
[25] Gangopadhyaya A., Mallow J. V., Rasinariu C., Sukhatme U. P., “Exactly solvable models in supersymmetric quantum mechanics and connection with spectrum-generating algebras”, Theoret. and Math. Phys., 118 (1999), 285–294 ; hep-th/9810074 | DOI | MR | Zbl
[26] Loutsenko I., Spiridonov V., Vinet L., Zhedanov A., “Spectral analysis of $q$-oscillator with general bilinear interaction”, J. Phys. A: Math. Gen., 31 (1998), 9081–9094 | DOI | MR | Zbl
[27] Quesne C., “Spectrum generating algebras for position-dependent mass oscillator Schrödinger equations”, J. Phys. A: Math. Theor., 40 (2007), 13107–13120 ; arXiv:0705.0862 | DOI | MR
[28] Bhattacharjie A., Sudarshan E. C. G., “A class of solvable potentials”, Nuovo Cimento, 25 (1962), 864–879 | DOI | MR | Zbl
[29] Lévai G., “A search for shape-invariant solvable potentials”, J. Phys. A: Math. Gen., 22 (1989), 689–702 | DOI | MR | Zbl
[30] De R., Dutt R., Sukhatme U., “Mapping of shape invariant potentials under point canonical transformations”, J. Phys. A: Math. Gen., 25 (1992), L843–L850 | DOI | MR
[31] Natanzon G. A., “General properties of potentials for which the Schrödinger equation can be solved by means of hypergeometric functions”, Theoret. and Math. Phys., 38 (1979), 146–153 | DOI | MR | Zbl
[32] Cordero P., Salamó S., “Algebraic solution for the Natanzon confluent potentials”, J. Phys. A: Math. Gen., 24 (1991), 5299–5306 | DOI | MR
[33] BenDaniel D. J., Duke C. B., “Space-charge effects on electron tunneling”, Phys. Rev., 152 (1966), 683–692 | DOI
[34] Lévy-Leblond J.-M., “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52 (1995), 1845–1849 | DOI | MR
[35] Bagchi B., Gorain P., Quesne C., Roychoudhury R., “A general scheme for the effective-mass Schrödinger equation and the generation of the associated potentials”, Modern Phys. Lett. A, 19 (2004), 2765–2775 ; quant-ph/0405193 | DOI | Zbl
[36] Alhaidari A. D., “Solutions of the nonrelativistic wave equation with position-dependent effective mass”, Phys. Rev. A, 66 (2002), 042116, 7 pp., ages ; quant-ph/0207061 | DOI
[37] Bagchi B., Gorain P., Quesne C., Roychoudhury R., “New approach to (quasi-)exactly solvable Schrödinger equations with a position-dependent effective mass”, Europhys. Lett., 72 (2005), 155–161 ; quant-ph/0505171 | DOI | MR
[38] Quesne C., “Application of nonlinear deformation algebra to a physical system with Pöschl–Teller potential”, J. Phys. A: Math. Gen., 32 (1999), 6705–6710 ; math-ph/9911004 | DOI | MR | Zbl
[39] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, math.CA/9602214
[40] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, Washington, D.C., 1964 | MR
[41] Romanovski V., “Sur quelques classes nouvelles de polynômes orthogonaux”, C. R. Acad. Sci. Paris, 188 (1929), 1023–1025 | Zbl
[42] Compean C. B., Kirchbach M., “The trigonometric Rosen–Morse potential in the supersymmetric quantum mechanics and its exact solutions”, J. Phys. A: Math. Gen., 39 (2006), 547–558 ; quant-ph/0509055 | DOI | MR
[43] Raposo A. P., Weber H. J., Alvarez-Castillo D., Kirchbach M., “Romanovski polynomials in selected physics problems”, Cent. Eur. J. Phys., 5 (2007), 253–284 ; arXiv:0706.3897 | DOI
[44] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, Academic Press, New York, 1980 | Zbl