@article{SIGMA_2009_5_a44,
author = {Enli Guo and Xiaohuan Mo and Xianqiang Zhang},
title = {The {Explicit} {Construction} of {Einstein} {Finsler} {Metrics} with {Non-Constant} {Flag} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a44/}
}
TY - JOUR AU - Enli Guo AU - Xiaohuan Mo AU - Xianqiang Zhang TI - The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a44/ LA - en ID - SIGMA_2009_5_a44 ER -
%0 Journal Article %A Enli Guo %A Xiaohuan Mo %A Xianqiang Zhang %T The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a44/ %G en %F SIGMA_2009_5_a44
Enli Guo; Xiaohuan Mo; Xianqiang Zhang. The Explicit Construction of Einstein Finsler Metrics with Non-Constant Flag Curvature. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a44/
[1] Bao D., Robles C., “Ricci and flag curvatures in Finsler geometry”, A Sampler of Riemann–Finsler Geometry, Math. Sci. Res. Inst. Publ., 50, Cambridge Univ. Press, Cambridge, 2004, 197–259 | MR | Zbl
[2] Bao D., Robles C., Shen Z., “Zermelo navigation on Riemannian manifolds”, J. Differential Geom., 66 (2004), 377–435 ; math.DG/0311233 | MR | Zbl
[3] Hamel G., “Über die Geometrieen in denen die Geraden die Kürzesten sind”, Math. Ann., 57 (1903), 231–264 | DOI | MR | Zbl
[4] Hawking S. W., “Gravitational Instantons”, Phys. Lett. A, 60 (1977), 81–83 | DOI | MR
[5] LeBrun C., “Complete Ricci-flat Kähler metrics on $C^n$ need not be flat”, Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Amer. Math. Soc., Providence, RI, 1991, 297–304 | MR
[6] Mo X., An introduction to Finsler geometry, Peking University Series in Mathematics, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006 | MR
[7] Pantilie R., “Harmonic morphisms with 1-dimensional fibres on 4-dimensional Einstein manifolds”, Comm. Anal. Geom., 10 (2002), 779–814 | MR | Zbl
[8] Randers G., “On an asymmetric metric in the four-space of general relativity”, Phys. Rev., 59 (1941), 195–199 | DOI | MR
[9] Robles C., Einstein metrics of Randers type, Ph.D. Thesis, British Columbia University, Canada, 2003
[10] Shen Z., “Projectively flat Randers metrics of constant curvature”, Math. Ann., 325 (2003), 19–30 | DOI | MR | Zbl
[11] Wood J. C., “Harmonic morphisms between Riemannian manifolds”, Modern Trends in Geometry and Topology, Cluj Univ. Press, Cluj-Napoca, 2006, 397–414 | MR | Zbl