@article{SIGMA_2009_5_a43,
author = {Robert Coquereaux and Gil Schieber},
title = {Quantum {Symmetries} for {Exceptional} $\mathrm{SU}(4)$ {Modular} {Invariants} {Associated} with {Conformal} {Embeddings}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a43/}
}
TY - JOUR
AU - Robert Coquereaux
AU - Gil Schieber
TI - Quantum Symmetries for Exceptional $\mathrm{SU}(4)$ Modular Invariants Associated with Conformal Embeddings
JO - Symmetry, integrability and geometry: methods and applications
PY - 2009
VL - 5
UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a43/
LA - en
ID - SIGMA_2009_5_a43
ER -
%0 Journal Article
%A Robert Coquereaux
%A Gil Schieber
%T Quantum Symmetries for Exceptional $\mathrm{SU}(4)$ Modular Invariants Associated with Conformal Embeddings
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a43/
%G en
%F SIGMA_2009_5_a43
Robert Coquereaux; Gil Schieber. Quantum Symmetries for Exceptional $\mathrm{SU}(4)$ Modular Invariants Associated with Conformal Embeddings. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a43/
[1] Aldazabal G., Allekote I., Font A., Nuñez C., “$N=2$ coset compactifications with non-diagonal invariants”, Internat. J. Modern Phys. A, 7 (1992), 6273–6297 ; hep-th/9111018 | DOI | MR | Zbl
[2] Altschuler D., Bauer M., Itzykson C., “The branching rules of conformal embeddings”, Comm. Math. Phys., 132 (1990), 349–364 | DOI | MR | Zbl
[3] Bais F., Bouwknegt P., “A classification of subgroup truncations of the bosonic string”, Nuclear Phys. B, 279 (1987), 561–570 | DOI | MR
[4] Böckenhauer J., Evans D., “Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors”, Comm. Math. Phys., 213 (2000), 267–289 ; math.OA/9911239 | DOI | MR | Zbl
[5] Böckenhauer J., Evans D., “Modular invariants, graphs and $\alpha$-induction for nets of subfactors. II”, Comm. Math. Phys., 200 (1999), 57–103 ; hep-th/9805023 | DOI | MR | Zbl
[6] Böckenhauer J., Evans D., Kawahigashi Y., “Chiral structure of modular invariants for subfactors”, Comm. Math. Phys., 210 (2000), 733–784 ; math.QA/9907149 | DOI | MR | Zbl
[7] Cappelli A., Itzykson C., Zuber J.-B., “The ADE classification of minimal and $A_1^{(1)}$ conformal invariant theories”, Comm. Math. Phys., 13 (1987), 1–26 | DOI | MR
[8] Coquereaux R., “Notes on the quantum tetrahedron”, Mosc. Math. J., 2 (2002), 41–80 ; hep-th/0011006 | MR | Zbl
[9] Coquereaux R., Schieber G., “Twisted partition functions for $ADE$ boundary conformal field theories and Ocneanu algebras of quantum symmetries”, J. Geom. Phys., 42 (2002), 216–258 ; hep-th/0107001 | DOI | MR | Zbl
[10] Coquereaux R., Schieber G., “Orders and dimensions for $sl(2)$ or $sl(3)$ module categories and boundary conformal field theories on a torus”, J. Math. Phys., 48 (2007), 043511, 17 pp., ages ; math-ph/0610073 | DOI | MR | Zbl
[11] Coquereaux R., Schieber G., “From conformal embeddings to quantum symmetries: an exceptional $\mathrm{SU}(4)$ example”, J. Phys. Conf. Ser., 103 (2008), 012006, 24 pp., ages ; arXiv:0710.1397 | DOI
[12] Di Francesco P., Matthieu P., Sénéchal D., Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, 1997 | MR
[13] Di Francesco P., Zuber J.-B., “$\mathrm{SU}(N)$ lattice integrable models associated with graphs”, Nuclear Phys. B, 338 (1990), 602–646 | DOI | MR
[14] Leningrad Math. J., 2 (1991), 829–860 | MR
[15] Etingof P., “On Vafa's theorem or tensor categories”, Math. Res. Lett., 9 (2002), 651–657 ; math.QA/0207007 | MR | Zbl
[16] Etingof P., Ostrik V., “Finite tensor categories”, Mosc. Math. J., 4 (2004), 627–654 ; math.QA/0301027 | MR | Zbl
[17] Fuchs J., Schellekens B., Schweigert C., “Quasi-Galois symmetries of the modular $S$-matrix”, Comm. Math. Phys., 176 (1996), 447–465 ; hep-th/9412009 | DOI | MR | Zbl
[18] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. I. Partition functions”, Nuclear Phys. B, 646 (2002), 353–497 ; hep-th/0204148 | DOI | MR | Zbl
[19] Fuchs J., Runkel I., Schweigert C., “TFT construction of RCFT correlators. II. Unoriented world sheets”, Nuclear Phys. B, 678 (2003), 511–637 ; hep-th/0306164 | DOI | MR
[20] Hammaoui D., Schieber G., Tahri E. H., “Higher Coxeter graphs associated to affine $su(3)$ modular invariants”, J. Phys. A: Math. Gen., 38 (2005), 8259–8286 ; hep-th/0412102 | DOI | MR | Zbl
[21] Isasi E., Schieber G., “From modular invariants to graphs: the modular splitting method”, J. Phys. A: Math. Theor., 40 (2007), 6513–6537 ; math-ph/0609064 | DOI | MR | Zbl
[22] Kac V. G., Peterson D. H., “Spin and wedge representations of infinite-dimensional Lie algebras and groupss”, Proc. Nat. Acad. Sci. U.S.A., 78 (1981), 3308–3312 | DOI | MR | Zbl
[23] Kac V. G., Peterson D. H., “Infinite-dimensional Lie algebras, theta functions and modular forms”, Adv. in Math., 53 (1984), 125–264 | DOI | MR | Zbl
[24] Kac V. G., Wakimoto M., “Modular and conformal invariance constraints in representation theory of affine algebras”, Adv. in Math., 70 (1988), 156–236 | DOI | MR | Zbl
[25] Kazhdan D., Lusztig G., “Tensor structures arising from affine Lie algebras. III”, J. Amer. Math. Soc., 7 (1994), 335–381 | DOI | MR | Zbl
[26] Kuperberg G., “Spiders for rank 2 Lie algebras”, Comm. Math. Phys., 180 (1996), 109–151 ; q-alg/9712003 | DOI | MR | Zbl
[27] Levstein F., Liberati J. I., “Branching rules for conformal embeddings”, Comm. Math. Phys., 173 (1995), 1–16 | DOI | MR | Zbl
[28] Longo R., Rehren K.-H., “Nets of subfactors”, Rev. Math. Phys., 7 (1995), 567–598 ; hep-th/9411077 | DOI | MR
[29] Ocneanu A., Seminars, unpublished, 1996
[30] Ocneanu A., Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors, Notes taken by S. Goto, Fields Institute Monographs, eds. Rajarama Bhat et al., AMS, 1999
[31] Ocneanu A., “The classification of subgroups of quantum $\mathrm{SU}(N)$”, Proceedings of Bariloche Summer School 2000 “Quantum symmetries in theoretical physics and mathematics” (January 10–21, 2000, S. C. de Bariloche), Contemp. Math., 294, eds. R. Coquereaux, A. García and R. Trinchero R., 2000, 133–160 | MR
[32] Ocneanu A., Higher Coxeter systems, Talk at the Workshop “Subfactors and Algebraic Aspects of Quantum Field Theory” (December 4–8, 2000, MSRI)
[33] Ostrik V., “Module categories, weak Hopf algebras and modular invariants”, Transform. Groups, 8 (2003), 177–206 ; math.QA/0111139 | DOI | MR | Zbl
[34] Petkova V. B., Zuber J.-B., “The many faces of Ocneanu cells”, Nuclear Phys. B, 603 (2001), 449–496 ; hep-th/0101151 | DOI | MR | Zbl
[35] Petkova V. B., Zuber J.-B., “From CFT to graphs”, Nuclear Phys. B, 463 (1996), 161–193 ; hep-th/9510175 | DOI | MR | Zbl
[36] Petkova V. B., Zuber J.-B., “Conformal field theory and graphs”, Physical Applications and Mathematical Aspects of Geometry, Groups, and Algebras, Proceedings 21st International Colloquium on Group Theoretical Methods in Physics. Vol. 2 (July 15–20, 1996, Goslar), eds. H. D. Doebner, P. Nattermann and W. Scherer, World Scientific, Singapore, 1997, 627–632; hep-th/9701103
[37] Schellekens A. N., “Meromorphic $c=24$ conformal field theories”, Comm. Math. Phys., 153 (1993), 159–185 ; hep-th/9205072 | DOI | MR | Zbl
[38] Schellekens A. N., Warner N. P., “Conformal subalgebras of Kac–Moody algebras”, Phys. Rev. D, 34 (1986), 3092–3096 | DOI | MR
[39] Schellekens A. N., Yankielowicz S., “Simple currents, modular invariants and fixed points”, Internat. J. Modern Phys. A, 5 (1990), 2903–2952 | DOI | MR | Zbl
[40] Verstegen D., “Conformal embeddings, rank-level duality and exceptional modular invariants”, Comm. Math. Phys., 137 (1991), 567–586 | DOI | MR | Zbl
[41] Wolf J. A., “The geometry and structure of isotropy irreducible homogeneous spaces”, Acta Math., 120 (1968), 59–148 ; Erratum: Acta Math., 152 (1984), 141–142 | DOI | MR | Zbl | DOI | MR | Zbl
[42] Xu F., “New braided endomorphisms from conformal inclusions”, Comm. Math. Phys., 192 (1998), 349–403 | DOI | MR | Zbl
[43] Xu F., An application of mirror extensions, arXiv:0710.4116 | MR