@article{SIGMA_2009_5_a40,
author = {Masahiko Ito},
title = {A~First {Order} $q${-Difference} {System} for the $BC_1${-Type} {Jackson} {Integral} and {Its} {Applications}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/}
}
TY - JOUR AU - Masahiko Ito TI - A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/ LA - en ID - SIGMA_2009_5_a40 ER -
Masahiko Ito. A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/
[1] Aomoto K., “A normal form of a holonomic $q$-difference system and its application to $BC_1$-type”, Int. J. Pure Appl. Math., 50 (2009), 85–95 | MR | Zbl
[2] Aomoto K., Ito M., “On the structure of Jackson integrals of $BC_n$ type and holonomic $q$-difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 145–150 | DOI | MR | Zbl
[3] Aomoto K., Ito M., “Structure of Jackson integrals of $BC_n$ type”, Tokyo J. Math., 31 (2008), 449–477 | DOI | MR | Zbl
[4] Aomoto K., Ito M., “$BC_n$-type Jackson integral generalized from Gustafson's $C_n$-type sum”, J. Difference Equ. Appl., 14 (2008), 1059–1097 | DOI | MR | Zbl
[5] Aomoto K., Ito M., “A determinant formula for a holonomic $q$-difference system associated with Jackson integrals of type $BC_n$”, Adv. Math., 221:4 (2009), 1069–1114 | DOI | MR | Zbl
[6] van Diejen J. F., Spiridonov V. P., “Modular hypergeometric residue sums of elliptic Selberg integrals”, Lett. Math. Phys., 58 (2001), 223–238 | DOI | MR | Zbl
[7] Denis R. Y., Gustafson R. A., “An $\mathrm{SU}(n)$ $q$-beta integral transformation and multiple hypergeometric series identities”, SIAM J. Math. Anal., 23 (1992), 552–561 | DOI | MR | Zbl
[8] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[9] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl
[10] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341 (1994), 69–119 | DOI | MR | Zbl
[11] Ito M., “$q$-difference shift for a $BC_n$ type Jackson integral arising from “elementary” symmetric polynomials”, Adv. Math., 204 (2006), 619–646 | DOI | MR | Zbl
[12] Ito M., “Another proof of Gustafson's $C_n$-type summation formula via “elementary” symmetric polynomials”, Publ. Res. Inst. Math. Sci., 42 (2006), 523–549 | DOI | MR | Zbl
[13] Ito M., “A multiple generalization of Slater's transformation formula for a very-well-poised-balanced ${}_{2r}\psi _{2r}$ series”, Q. J. Math., 59 (2008), 221–235 | DOI | MR | Zbl
[14] Ito M., Okada S., “An application of Cauchy–Sylvester's theorem on compound determinants to a $BC_n$-type Jackson integral”, Proceedings of the Conference on Partitions (University of Florida, March 12–16, 2008), $q$-Series and Modular Forms (to appear)
[15] Ito M., Sanada Y., “On the Sears–Slater basic hypergeometric transformations”, Ramanujan J., 17 (2008), 245–257 | DOI | MR | Zbl
[16] Nassrallah B., Rahman M., “Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials”, SIAM J. Math. Anal., 16 (1985), 186–197 | DOI | MR | Zbl
[17] Rains E. M., Spiridonov V. P., Determinants of elliptic hypergeometric integrals, Funct. Anal. Appl., to appear | MR