A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an explicit expression for the $q$-difference system, which the $BC_1$-type Jackson integral ($q$-series) satisfies, as first order simultaneous $q$-difference equations with a concrete basis. As an application, we give a simple proof for the hypergeometric summation formula introduced by Gustafson and the product formula of the $q$-integral introduced by Nassrallah–Rahman and Gustafson.
Keywords: $q$-difference equations; Jackson integral of type $BC_1$; GustafsonвЂTMs $C_n$-type sum; Nassrallah–Rahman integral.
@article{SIGMA_2009_5_a40,
     author = {Masahiko Ito},
     title = {A~First {Order} $q${-Difference} {System} for the $BC_1${-Type} {Jackson} {Integral} and {Its} {Applications}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/}
}
TY  - JOUR
AU  - Masahiko Ito
TI  - A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/
LA  - en
ID  - SIGMA_2009_5_a40
ER  - 
%0 Journal Article
%A Masahiko Ito
%T A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/
%G en
%F SIGMA_2009_5_a40
Masahiko Ito. A First Order $q$-Difference System for the $BC_1$-Type Jackson Integral and Its Applications. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a40/

[1] Aomoto K., “A normal form of a holonomic $q$-difference system and its application to $BC_1$-type”, Int. J. Pure Appl. Math., 50 (2009), 85–95 | MR | Zbl

[2] Aomoto K., Ito M., “On the structure of Jackson integrals of $BC_n$ type and holonomic $q$-difference equations”, Proc. Japan Acad. Ser. A Math. Sci., 81 (2005), 145–150 | DOI | MR | Zbl

[3] Aomoto K., Ito M., “Structure of Jackson integrals of $BC_n$ type”, Tokyo J. Math., 31 (2008), 449–477 | DOI | MR | Zbl

[4] Aomoto K., Ito M., “$BC_n$-type Jackson integral generalized from Gustafson's $C_n$-type sum”, J. Difference Equ. Appl., 14 (2008), 1059–1097 | DOI | MR | Zbl

[5] Aomoto K., Ito M., “A determinant formula for a holonomic $q$-difference system associated with Jackson integrals of type $BC_n$”, Adv. Math., 221:4 (2009), 1069–1114 | DOI | MR | Zbl

[6] van Diejen J. F., Spiridonov V. P., “Modular hypergeometric residue sums of elliptic Selberg integrals”, Lett. Math. Phys., 58 (2001), 223–238 | DOI | MR | Zbl

[7] Denis R. Y., Gustafson R. A., “An $\mathrm{SU}(n)$ $q$-beta integral transformation and multiple hypergeometric series identities”, SIAM J. Math. Anal., 23 (1992), 552–561 | DOI | MR | Zbl

[8] Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004 | MR | Zbl

[9] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals with many parameters associated to the classical groups”, SIAM J. Math. Anal., 23 (1992), 525–551 | DOI | MR | Zbl

[10] Gustafson R. A., “Some $q$-beta and Mellin–Barnes integrals on compact Lie groups and Lie algebras”, Trans. Amer. Math. Soc., 341 (1994), 69–119 | DOI | MR | Zbl

[11] Ito M., “$q$-difference shift for a $BC_n$ type Jackson integral arising from “elementary” symmetric polynomials”, Adv. Math., 204 (2006), 619–646 | DOI | MR | Zbl

[12] Ito M., “Another proof of Gustafson's $C_n$-type summation formula via “elementary” symmetric polynomials”, Publ. Res. Inst. Math. Sci., 42 (2006), 523–549 | DOI | MR | Zbl

[13] Ito M., “A multiple generalization of Slater's transformation formula for a very-well-poised-balanced ${}_{2r}\psi _{2r}$ series”, Q. J. Math., 59 (2008), 221–235 | DOI | MR | Zbl

[14] Ito M., Okada S., “An application of Cauchy–Sylvester's theorem on compound determinants to a $BC_n$-type Jackson integral”, Proceedings of the Conference on Partitions (University of Florida, March 12–16, 2008), $q$-Series and Modular Forms (to appear)

[15] Ito M., Sanada Y., “On the Sears–Slater basic hypergeometric transformations”, Ramanujan J., 17 (2008), 245–257 | DOI | MR | Zbl

[16] Nassrallah B., Rahman M., “Projection formulas, a reproducing kernel and a generating function for $q$-Wilson polynomials”, SIAM J. Math. Anal., 16 (1985), 186–197 | DOI | MR | Zbl

[17] Rains E. M., Spiridonov V. P., Determinants of elliptic hypergeometric integrals, Funct. Anal. Appl., to appear | MR