@article{SIGMA_2009_5_a38,
author = {Juan A. Calzada and Javier Negro and Mariano A. del Olmo},
title = {Intertwining {Symmetry} {Algebras} of {Quantum} {Superintegrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a38/}
}
TY - JOUR AU - Juan A. Calzada AU - Javier Negro AU - Mariano A. del Olmo TI - Intertwining Symmetry Algebras of Quantum Superintegrable Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a38/ LA - en ID - SIGMA_2009_5_a38 ER -
%0 Journal Article %A Juan A. Calzada %A Javier Negro %A Mariano A. del Olmo %T Intertwining Symmetry Algebras of Quantum Superintegrable Systems %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a38/ %G en %F SIGMA_2009_5_a38
Juan A. Calzada; Javier Negro; Mariano A. del Olmo. Intertwining Symmetry Algebras of Quantum Superintegrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a38/
[1] Evans N. W., “Superintegrability in classical mechanics”, Phys. Rev. A, 41 (1990), 5666–5676 ; Evans N. W., “Super-integrability of the Winternitz system”, Phys. Lett. A, 147 (1990), 483–486 ; Evans N. W., “Group theory of the Smorodinsky–Winternitz system”, J. Math. Phys., 32 (1991), 3369–3375 | DOI | MR | DOI | MR | DOI | MR | Zbl
[2] Bonatsos D., Daskaloyannis C., Kokkotas K., “Deformed oscillator algebras for two-dimensional quantum superintegrable systems”, Phys. Rev. A, 50 (1994), 3700–3709 ; hep-th/9309088 | DOI | MR
[3] Daskaloyannis C., “Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems”, J. Math. Phys., 42 (2001), 1100–1119 ; math-ph/0003017 | DOI | MR | Zbl
[4] Grosche C., Pogosyan G. S., Sisakian A. N., “Path integral discussion for Smorodinsky–Winternitz potentials. II. The two- and three-dimensional sphere”, Fortschr. Phys., 43 (1995), 523–563 ; ; Grosche C., Pogosyan G. S., Sisakian A. N., “Path integral approach to superintegrable potentials. III. Two-dimensional hyperboloid”, Phys. Particles Nuclei, 27 (1996), 244–272 ; Grosche C., Pogosyan G. S., Sisakian A. N., “Path integral discussion for superintegrable potentials. IV. Three dimensional pseudosphere”, Phys. Particles Nuclei, 28 (1997), 486–519 hep-th/9402121 | DOI | MR | Zbl | DOI
[5] Ballesteros A., Herranz F. J., Santander M., Sanz-Gil T., “Maximal superintegrability on $N$-dimensional curved spaces”, J. Phys. A: Math. Gen., 36 (2003), L93–L99 ; math-ph/0211012 | DOI | MR | Zbl
[6] Cariñena J. F., Rañada M. F., Santander M., “Central potentials on spaces of constant curvature: the Kepler problem on the two-dimensional sphere $\mathcal S^2$ and the hyperbolic plane $\mathcal H^2$”, J. Math. Phys., 46 (2005), 052702, 25 pp., ages ; ; Cariñena J. F., Rañada M. F., Santander M., “Superintegrability on curved spaces, orbits and momentum hodographs: revisiting a classical result by Hamilton”, J. Phys. A: Math. Theor., 40 (2007), 13645–13666 math-ph/0504016 | DOI | MR | Zbl | DOI | MR | Zbl
[7] Lakshmanan M., Eswaran K., “Quantum dynamics of a solvable nonlinear chiral model”, J. Phys. A: Math. Gen., 8 (1975), 1658–1669 | DOI
[8] Higgs P. W., “Dynamical symmetries in a spherical geometry. I”, J. Phys. A: Math. Gen., 12 (1979), 309–323 | DOI | MR | Zbl
[9] Marsden J. E., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[10] del Olmo M. A., Rodríguez M. A., Winternitz P., “Integrable systems based on $\mathrm{SU}(p,q)$ homogeneous manifolds”, J. Math. Phys., 34 (1993), 5118–5139 | DOI | MR | Zbl
[11] del Olmo M. A., Rodríguez M. A., Winternitz P., “The conformal group $\mathrm{SU}(2,2)$ and integrable systems on a Lorentzian hyperboloid”, Fortschr. Phys., 44 (1996), 199–233 ; hep-th/9407080 | DOI | MR | Zbl
[12] Calzada J. A., del Olmo M. A., Rodríguez M. A., “Classical superintegrable $\mathrm{SO}(p,q)$ Hamiltonian systems”, J. Geom. Phys., 23 (1997), 14–30 | DOI | MR | Zbl
[13] Calzada J. A., del Olmo M. A., Rodríguez M. A., “Pseudo-orthogonal groups and integrable dynamical systems in two dimensions”, J. Math. Phys., 40 (1999), 188–209 ; solv-int/9810010 | DOI | MR | Zbl
[14] Calzada J. A., Negro J., del Olmo M. A., Rodríguez M. A., “Contraction of superintegrable Hamiltonian systems”, J. Math. Phys., 41 (1999), 317–336 | DOI | MR
[15] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | MR
[16] Alhassid Y., Gürsey F., Iachello F., “Group theory approach to scattering”, Ann. Physics, 148 (1983), 346–380 | DOI | MR | Zbl
[17] KuruŞ., Tegmen A., Vercin A., “Intertwined isospectral potentials in an arbitrary dimension”, J. Math. Phys., 42 (2001), 3344–3360 ; quant-ph/0111034 | DOI | MR | Zbl
[18] Demircioglu B., KuruŞ., Önder M., Vercin A., “Two families of superintegrable and isospectral potentials in two dimensions”, J. Math. Phys., 43 (2002), 2133–2150 ; quant-ph/0201099 | DOI | MR | Zbl
[19] Fernández D. J., Negro J., del Olmo M. A., “Group approach to the factorization of the radial oscillator equation”, Ann. Physics, 252 (1996), 386–412 | DOI | MR | Zbl
[20] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[21] Calzada J. A., Negro J., del Olmo M. A., “Superintegrable quantum $u(3)$ systems and higher rank factorizations”, J. Math. Phys., 47 (2006), 043511, 17 pp., ages ; math-ph/0601067 | DOI | MR | Zbl
[22] Calzada J. A., KuruŞ., Negro J., del Olmo M. A., “Intertwining symmetry algebras of quantum superintegrable systems on the hyperboloid”, J. Phys. A: Math. Theor., 41 (2008), 255201, 11 pp., ages ; arXiv:0803.2117 | DOI | MR | Zbl
[23] Kobayashi S., Nomizu K., Foundations of differential geometry, Interscience Publishers, New York – London, 1963 | MR | Zbl
[24] del Olmo M. A., Rodríguez M. A., Winternitz P., Zassenhaus H., “Maximal abelian subalgebras of pseudounitary Lie algebras”, Linear Algebra Appl., 135 (1990), 79–151 | DOI | MR | Zbl
[25] Zhedanov A. S., “The “Higgs algebra” as a “quantum” deformation of $\mathrm{SU}(2)$”, Modern Phys. Lett. A, 7 (1992), 507–512 | DOI | MR | Zbl
[26] Bambah B. A., Sunil Kumar V., Mukku C., “Polynomial algebras: their representations, coherent states and applications to quantum mechanics”, J. Theor. Phys. Group Theory Nonlinear Opt., 11 (2007), 265–284 | MR
[27] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions”, J. Math. Phys., 37 (1996), 6439–6467 | DOI | MR | Zbl
[28] Kalnins E. G., Miller W. Jr., Pogosyan G. S., “Superintegrability on the two-dimensional hyperboloid”, J. Math. Phys., 38 (1997), 5416–5433 | DOI | MR | Zbl
[29] Grabowski J., Landi G., Marmo G., Vilasi G., “Generalized reduction procedure: symplectic and Poisson formalism”, Fortschr. Phys., 42 (1994), 393–427 ; hep-th/9307018 | DOI | MR