Elliptic Hypergeometric Solutions to Elliptic Difference Equations
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown how to define difference equations on particular lattices $\{x_n\}$, $n\in\mathbb Z$, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here.
Keywords: elliptic difference equations; elliptic hypergeometric expansions.
@article{SIGMA_2009_5_a37,
     author = {Alphonse P. Magnus},
     title = {Elliptic {Hypergeometric} {Solutions} to {Elliptic} {Difference} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a37/}
}
TY  - JOUR
AU  - Alphonse P. Magnus
TI  - Elliptic Hypergeometric Solutions to Elliptic Difference Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a37/
LA  - en
ID  - SIGMA_2009_5_a37
ER  - 
%0 Journal Article
%A Alphonse P. Magnus
%T Elliptic Hypergeometric Solutions to Elliptic Difference Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a37/
%G en
%F SIGMA_2009_5_a37
Alphonse P. Magnus. Elliptic Hypergeometric Solutions to Elliptic Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a37/

[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl

[2] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, no. 319, 1985 | MR

[3] Bagby T., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl

[4] Burskii V. P., Zhedanov A. S., “The Dirichlet and the Poncelet problems”, Physics and Mathematical Structures of Nonlinear Waves, RIAM Symposium No.16ME-S1 (November 15–17, 2004, Kyushu University, Kasuga, Fukuoka, Japan), 2004, 22–26; available at http://www.riam.kyushu-u.ac.jp/fluid/meeting/16ME-S1/ papers/Article-No-24.pdf

[5] Burskii V. P., Zhedanov A. S., “Dirichlet and Neumann Problems for string equation, Poncelet problem and Pell–Abel equation”, SIGMA, 2 (2006), 041, 5 pp., ages ; math.AP/0604278 | MR | Zbl

[6] Burskii V. P., Zhedanov A. S., On Dirichlet, Poncelet and Abel problems, arXiv:0903.2531

[7] Ganelius T., “Degree of rational approximation”, Lectures on Approximation and Value Distribution, Sém. Math. Sup., 79, eds. T. Ganelius et al., Presses Univ. Montréal, Montreal, Que., 1982, 9–78 | MR

[8] Math. USSR-Sb., 7 (1969), 623–635 | DOI | MR | Zbl | Zbl

[9] Gonchar A. A., “Rational approximations of analytic functions”, Sovrem. Probl. Mat. Current Problems in Mathematics, 1, Ross. Akad. Nauk, Inst. Mat. im. V. A. Steklova, Moscow, 2003, 83–106 (in Russian) | MR

[10] Math. USSR-Sb., 62 (1989), 305–348 | DOI | MR | Zbl | Zbl

[11] Gonchar A. A., Rakhmanov E. A., Suetin S. P., “On the rate of convergence of Padé approximants of orthogonal expansions”, Progress in Approximation Theory (Tampa, FL, 1990), Springer Ser. Comput. Math., 19, Springer, New York, 1992, 169–190 | MR | Zbl

[12] Gonchar A. A., Suetin S. P., “On Padé approximants of meromorphic functions of Markov type”, Current Problems in Mathematics, 5, Ross. Akad. Nauk, Inst. Mat. im. V.A. Steklova, Moscow, 2004, 3–67 (in Russian) ; available at http://www.mi.ras.ru/spm/pdf/005.pdf | DOI | MR

[13] Grünbaum F. A., Haine L., “On a $q$-analogue of Gauss equation and some $q$-Riccati equations”, Special Functions, $q$-Series and Related Topics (Toronto, ON, 1995), Fields Inst. Commun., 14, eds. M. E. H. Ismail et al., Amer. Math. Soc., Providence, RI, 1997, 77–81 | MR | Zbl

[14] Hardy G. H., Littlewood J. E., “Notes on the theory of series. XXIV. A curious power-series”, Proc. Cambridge Philos. Soc., 42 (1946), 85–90 | DOI | MR | Zbl

[15] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, with two chapters by Walter Van Assche, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[16] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report no. 98-17, Delft University of Technology, Faculty of Information Technology and Systems, Department of Technical Mathematics and Informatics, 1998; math.CA/9602214

[17] Koornwinder T. H., “Compact quantum groups and $q$-special functions”, Representations of Lie Groups and Quantum Groups, Chapters 1, 2: General compact quantum groups, a tutorial (Trento, 1993), Pitman Res. Notes Math. Ser., 311, eds. V. Baldoni and M. A. Picardello, Longman Sci. Tech., Harlow, 1994, 46–128 ; ; Chapters 3, 4: $q$-special functions, a tutorial; hep-th/9401114math.CA/9403216 | MR | Zbl

[18] Loutsenko I., Spiridonov V., “Spectral self-similarity, one-dimensional Ising chains and random matrices”, Nuclear Phys. B, 538 (1999), 731–758 | DOI | MR | Zbl

[19] Loutsenko I., Spiridonov V., “Soliton solutions of integrable hierarchies and Coulomb plasmas”, J. Statist. Phys., 99 (2000), 751–767 ; cond-mat/9909308 | DOI | MR | Zbl

[20] Loutsenko I., Spiridonov V., “A critical phenomenon in solitonic Ising chains”, SIGMA, 3 (2007), 059, 11 pp., ages ; arXiv:0704.3173 | MR | Zbl

[21] Lubinsky D. S., “Rogers–Ramanujan and the Baker–Gammel–Wills (Padé) conjecture”, Ann. of Math. (2), 157 (2003), 847–889 ; math.CA/0402305 | DOI | MR | Zbl

[22] Magnus A. P., “Associated Askey–Wilson polynomials as Laguerre-Hahn orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, eds. M. Alfaro et al., Springer, Berlin, 1988, 261–278 | MR

[23] Magnus A. P., “Special non uniform lattice ($snul$) orthogonal polynomials on discrete dense sets of points”, J. Comp. Appl. Math., 65 (1995), 253–265 ; math.CA/9502228 | DOI | MR | Zbl

[24] Magnus A. P., “Rational interpolation to solutions of Riccati difference equations on elliptic lattices”, J. Comp. Appl. Math., 233:3 (2009), 793–801 ; preprint available at http://perso.uclouvain.be/alphonse.magnus/num3/MagnusLuminy2007.pdf | DOI | Zbl

[25] Meinguet J., “An electrostatic approach to the determination of extremal measures”, Math. Phys. Anal. Geom., 3 (2000), 323–337 | DOI | MR | Zbl

[26] Milne-Thomson L. M., The calculus of finite differences, Macmillan and Co., Ltd., London, 1951 ; available at http://www.archive.org/details/calculusoffinite032017mbp | MR

[27] Nikiforov A. F., Suslov S. K., “Classical orthogonal polynomials of a discrete variable on nonuniform lattices”, Lett. Math. Phys., 11 (1986), 27–34 | DOI | MR | Zbl

[28] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Series in Computational Physics, Springer-Verlag, Berlin, 1991 | MR

[29] Saff E. B., Totik V., Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | MR | Zbl

[30] Russ. Math. Surv., 63 (2008), 405–472 ; arXiv:0805.3135 | DOI | MR | Zbl

[31] Spiridonov V. P., On the analytical properties of infinite elliptic hypergeometric series, talk presented at the workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions”, Hausdorff Center for Mathematics, Bonn, 2008

[32] Spiridonov V. P., Zhedanov A. S., “Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids”, Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ, 2000), NATO Sci. Ser. II, Math. Phys. Chem., 30, eds. J. Bustoz et al., Kluwer Acad. Publ., Dordrecht, 2001, 365–388 | MR | Zbl

[33] Spiridonov V. P., Zhedanov A. S., Private communication to the author, Wednesday, July 23, 2008, on the Rhine river, en route towards Königswinter

[34] Spiridonov V. P., Zhedanov A. S., “Elliptic grids, rational functions, and the Padé interpolation”, Ramanujan J., 13 (2007), 285–310 | DOI | MR | Zbl

[35] Stahl H., “Convergence of rational interpolants”, Numerical Analysis (Louvain-la-Neuve, 1995), Bull. Belg. Math. Soc. Simon Stevin, 1996, suppl., 1996, 11–32 | MR | Zbl

[36] Walsh J. L., Interpolation and approximation by rational functions in the complex domain, 4th ed., American Mathematical Society Colloquium Publications, 20, American Mathematical Society, Providence, R.I., 1965 | MR | Zbl