Hilbert Transforms Associated with Dunkl–Hermite Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider expansions of functions in $L^p(\mathbb R,|x|^{2k}\,dx)$, $1\leq p+\infty$ with respect to Dunkl–Hermite functions in the rank-one setting. We actually define the heat-diffusion and Poisson integrals in the one-dimensional Dunkl setting and study their properties. Next, we define and deal with Hilbert transforms and conjugate Poisson integrals in the same setting. The formers occur to be Calderón–Zygmund operators and hence their mapping properties follow from general results.
Keywords: Dunkl operator; Dunkl–Hermite functions; Hilbert transforms; conjugate Poisson integrals; Calderón–Zygmund operators.
@article{SIGMA_2009_5_a36,
     author = {N\'ejib Ben Salem and Taha Samaali},
     title = {Hilbert {Transforms} {Associated} with {Dunkl{\textendash}Hermite} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/}
}
TY  - JOUR
AU  - Néjib Ben Salem
AU  - Taha Samaali
TI  - Hilbert Transforms Associated with Dunkl–Hermite Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/
LA  - en
ID  - SIGMA_2009_5_a36
ER  - 
%0 Journal Article
%A Néjib Ben Salem
%A Taha Samaali
%T Hilbert Transforms Associated with Dunkl–Hermite Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/
%G en
%F SIGMA_2009_5_a36
Néjib Ben Salem; Taha Samaali. Hilbert Transforms Associated with Dunkl–Hermite Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/

[1] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl

[2] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications (Tampa, 1991), Contemp. Math., 138, 1992, 123–138 | MR | Zbl

[3] El Garna A., “The left-definite spectral theory for the Dunkl–Hermite differential-difference equation”, J. Math. Anal. Appl., 298 (2004), 463–486 | DOI | MR | Zbl

[4] Gosselin J., Stempak K., “Conjugate expansions for Hermite functions”, Illinois J. Math., 38 (1994), 177–197 | MR | Zbl

[5] Journé J.-L., Calderón–Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, 994, Springer-Verlag, Berlin, 1983 | MR | Zbl

[6] Nowak A., Stempak K., “Riesz transforms for the Dunkl harmonic oscillator”, Math. Z., 262:3 (2009) ; arXiv:0802.0474 | DOI | MR | Zbl

[7] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 | MR | Zbl

[8] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl

[9] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl

[10] Stein E. M., Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl

[11] Stempak K., Torrea J. L., “Poisson integrals and Riesz transforms for Hermite function expansions with weights”, J. Funct. Anal., 202 (2003), 443–472 | DOI | MR | Zbl

[12] Thangavelu S., Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl