@article{SIGMA_2009_5_a36,
author = {N\'ejib Ben Salem and Taha Samaali},
title = {Hilbert {Transforms} {Associated} with {Dunkl{\textendash}Hermite} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/}
}
Néjib Ben Salem; Taha Samaali. Hilbert Transforms Associated with Dunkl–Hermite Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a36/
[1] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[2] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications (Tampa, 1991), Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[3] El Garna A., “The left-definite spectral theory for the Dunkl–Hermite differential-difference equation”, J. Math. Anal. Appl., 298 (2004), 463–486 | DOI | MR | Zbl
[4] Gosselin J., Stempak K., “Conjugate expansions for Hermite functions”, Illinois J. Math., 38 (1994), 177–197 | MR | Zbl
[5] Journé J.-L., Calderón–Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón, Lecture Notes in Mathematics, 994, Springer-Verlag, Berlin, 1983 | MR | Zbl
[6] Nowak A., Stempak K., “Riesz transforms for the Dunkl harmonic oscillator”, Math. Z., 262:3 (2009) ; arXiv:0802.0474 | DOI | MR | Zbl
[7] Rosenblum M., “Generalized Hermite polynomials and the Bose-like oscillator calculus”, Nonselfadjoint Operators and Related Topics (Beer Sheva, 1992), Oper. Theory Adv. Appl., 73, Birkhäuser, Basel, 1994, 369–396 | MR | Zbl
[8] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl
[9] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl
[10] Stein E. M., Topics in harmonic analysis related to the Littlewood–Paley theory, Annals of Mathematics Studies, 63, Princeton University Press, Princeton, NJ, 1970 | MR | Zbl
[11] Stempak K., Torrea J. L., “Poisson integrals and Riesz transforms for Hermite function expansions with weights”, J. Funct. Anal., 202 (2003), 443–472 | DOI | MR | Zbl
[12] Thangavelu S., Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl