@article{SIGMA_2009_5_a31,
author = {Helene Airault},
title = {Vector {Fields} on the {Space} of {Functions} {Univalent} {Inside} the {Unit} {Disk} via {Faber} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/}
}
TY - JOUR AU - Helene Airault TI - Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/ LA - en ID - SIGMA_2009_5_a31 ER -
Helene Airault. Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/
[1] Airault H., Malliavin P., “Unitarizing probability measures for representations of Virasoro algebra”, J. Math. Pures Appl. (9), 80 (2001), 627–667 | DOI | MR | Zbl
[2] Airault H., Ren J., “An algebra of differential operators and generating functions on the set of univalent functions”, Bull. Sci. Math., 126 (2002), 343–367 | DOI | MR | Zbl
[3] Airault H., Neretin Yu. A., “On the action of Virasoro algebra on the space of univalent functions”, Bull. Sci. Math., 132 (2008), 27–39 ; arXiv:0704.2149 | DOI | MR | Zbl
[4] Kirillov A. A., “Geometric approach to discrete series of unirreps for Vir”, J. Math. Pures Appl. (9), 77 (1998), 735–746 | MR | Zbl
[5] Kirillov A. A., Yur'ev D. V., “Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 35–46 | MR | Zbl
[6] Neretin Yu. A., “Representations of Virasoro and affine Lie algebras”, Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., 22, Springer, Berlin, 1994, 157–234 | MR
[7] Schaeffer A. C., Spencer D. C., Coefficients regions for schlicht functions, American Mathematical Society Colloquium Publications, 35, New York, 1950 | MR | Zbl
[8] Schiffer M., “Faber polynomials in the theory of univalent functions”, Bull. Amer. Math. Soc., 54 (1948), 503–517 | DOI | MR | Zbl