Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain the Kirillov vector fields on the set of functions $f$ univalent inside the unit disk, in terms of the Faber polynomials of $1/f(1/z)$. Our construction relies on the generating function for Faber polynomials.
Keywords: vector fields; univalent functions; Faber polynomials.
@article{SIGMA_2009_5_a31,
     author = {Helene Airault},
     title = {Vector {Fields} on the {Space} of {Functions} {Univalent} {Inside} the {Unit} {Disk} via {Faber} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/}
}
TY  - JOUR
AU  - Helene Airault
TI  - Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/
LA  - en
ID  - SIGMA_2009_5_a31
ER  - 
%0 Journal Article
%A Helene Airault
%T Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/
%G en
%F SIGMA_2009_5_a31
Helene Airault. Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a31/

[1] Airault H., Malliavin P., “Unitarizing probability measures for representations of Virasoro algebra”, J. Math. Pures Appl. (9), 80 (2001), 627–667 | DOI | MR | Zbl

[2] Airault H., Ren J., “An algebra of differential operators and generating functions on the set of univalent functions”, Bull. Sci. Math., 126 (2002), 343–367 | DOI | MR | Zbl

[3] Airault H., Neretin Yu. A., “On the action of Virasoro algebra on the space of univalent functions”, Bull. Sci. Math., 132 (2008), 27–39 ; arXiv:0704.2149 | DOI | MR | Zbl

[4] Kirillov A. A., “Geometric approach to discrete series of unirreps for Vir”, J. Math. Pures Appl. (9), 77 (1998), 735–746 | MR | Zbl

[5] Kirillov A. A., Yur'ev D. V., “Kähler geometry of the infinite-dimensional homogeneous space $M=\operatorname{Diff}_+(S^1)/\operatorname{Rot}(S^1)$”, Funktsional. Anal. i Prilozhen., 21:4 (1987), 35–46 | MR | Zbl

[6] Neretin Yu. A., “Representations of Virasoro and affine Lie algebras”, Representation Theory and Noncommutative Harmonic Analysis, I, Encyclopaedia Math. Sci., 22, Springer, Berlin, 1994, 157–234 | MR

[7] Schaeffer A. C., Spencer D. C., Coefficients regions for schlicht functions, American Mathematical Society Colloquium Publications, 35, New York, 1950 | MR | Zbl

[8] Schiffer M., “Faber polynomials in the theory of univalent functions”, Bull. Amer. Math. Soc., 54 (1948), 503–517 | DOI | MR | Zbl