Differential and Functional Identities for the Elliptic Trilogarithm
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

When written in terms of $\vartheta$-functions, the classical Frobenius–Stickelberger pseudo-addition formula takes a very simple form. Generalizations of this functional identity are studied, where the functions involved are derivatives (including derivatives with respect to the modular parameter) of the elliptic trilogarithm function introduced by Beilinson and Levin. A differential identity satisfied by this function is also derived. These generalized Frobenius–Stickelberger identities play a fundamental role in the development of elliptic solutions of the Witten–Dijkgraaf–Verlinde–Verlinde equations of associativity, with the simplest case reducing to the above mentioned differential identity.
Keywords: Frobenius manifolds; WDVV equations; Jacobi groups; orbit spaces.
@article{SIGMA_2009_5_a30,
     author = {Ian A. B. Strachan},
     title = {Differential and {Functional} {Identities} for the {Elliptic} {Trilogarithm}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/}
}
TY  - JOUR
AU  - Ian A. B. Strachan
TI  - Differential and Functional Identities for the Elliptic Trilogarithm
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/
LA  - en
ID  - SIGMA_2009_5_a30
ER  - 
%0 Journal Article
%A Ian A. B. Strachan
%T Differential and Functional Identities for the Elliptic Trilogarithm
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/
%G en
%F SIGMA_2009_5_a30
Ian A. B. Strachan. Differential and Functional Identities for the Elliptic Trilogarithm. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/

[1] Beilinson A., Levin A., “The elliptic polylogarithm”, Motives, Part 2 (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, eds. U. Jannsen, S. Kleiman and J.-P. Serre, Amer. Math. Soc., Providence, RI, 1994, 123–190 | MR | Zbl

[2] Bertola M., “Frobenius manifold structure on orbit space of Jacobi groups. I”, Differential Geom. Appl., 13 (2000), 19–41 | DOI | MR | Zbl

[3] Chalykh O. A., Veselov A. P., “Locus configurations and $\vee$-systems”, Phys. Lett. A, 285 (2001), 339–349 ; math-ph/0105003 | DOI | MR | Zbl

[4] Cherednik I., “A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras”, Invent. Math., 66 (1991), 411–431 | DOI | MR

[5] Dunkl C., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia and S. Greco, Springer, Berlin, 1996, 120–348 ; hep-th/9407018 | MR | Zbl

[7] Dubrovin B., “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132 ; math.DG/0307374 | MR | Zbl

[8] Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, MA, 1985 | MR | Zbl

[9] Calaque D., Enriques B., Etingof P., Universal KZB equations I: the elliptic case, math.QA/0702670 | MR

[10] Feigin M., Trigonometric solutions of WDVV equations and generalized Calogero–Moser–Sutherland systems, arXiv:0802.0532 | MR

[11] Feigin M., Veselov A. P., “On the geometry of $\vee$-systems”, Geometry Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 111–123 ; arXiv:0710.5729 | MR | Zbl

[12] Frobenius G., Stickelberger L., “Über die Addition und Multiplication der elliptischen Functionen”, J. Reine Angew. Math., 88 (1880), 146–184

[13] Heckman G. J., “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl

[14] Levin A., “Elliptic polylogarithms: an analytic theory”, Compositio Math., 106 (1997), 267–282 | DOI | MR | Zbl

[15] Marshakov A., Mironov A., Morozov A., “A WDVV-like equation in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B, 389 (1996), 43–52 ; hep-th/9607109 | DOI | MR

[16] Martini R.,Hoevenaars L. K., “Trigonometric solutions of the WDVV equations from root systems”, Lett. Math. Phys., 65 (2003), 15–18 ; math-ph/0302059 | DOI | MR | Zbl

[17] Riley A., Strachan I. A. B., “Duality for Jacobi group orbit spaces and elliptic solutions of the WDVV equations”, Lett. Math. Phys., 77 (2006), 221–234 ; math-ph/0511048 | DOI | MR | Zbl

[18] Satake I., Frobenius manifolds for elliptic root systems, math.AG/0611553

[19] Strachan I. A. B., Weyl groups and elliptic solutions of the WDVV equations, arXiv:0802.0388

[20] Ramakrishnan D., “On the monodromy of higher logarithms”, Proc. Amer. Math. Soc., 85 (1982), 596–599 | DOI | MR | Zbl

[21] Wirthmüller K., “Root systems and Jacobi forms”, Compositio Math., 82 (1992), 293–354 | MR | Zbl

[22] Whittaker E. T., Watson G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, reprint of 4th ed. (1927), Cambridge University Press, Cambridge, 1996 | MR | Zbl

[23] Zagier D., “The Bloch–Wigner–Ramakrishnan polylogarithm function”, Math. Ann., 286 (1990), 613–624 | DOI | MR | Zbl