@article{SIGMA_2009_5_a30,
author = {Ian A. B. Strachan},
title = {Differential and {Functional} {Identities} for the {Elliptic} {Trilogarithm}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/}
}
Ian A. B. Strachan. Differential and Functional Identities for the Elliptic Trilogarithm. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a30/
[1] Beilinson A., Levin A., “The elliptic polylogarithm”, Motives, Part 2 (Seattle, WA, 1991), Proc. Sympos. Pure Math., 55, eds. U. Jannsen, S. Kleiman and J.-P. Serre, Amer. Math. Soc., Providence, RI, 1994, 123–190 | MR | Zbl
[2] Bertola M., “Frobenius manifold structure on orbit space of Jacobi groups. I”, Differential Geom. Appl., 13 (2000), 19–41 | DOI | MR | Zbl
[3] Chalykh O. A., Veselov A. P., “Locus configurations and $\vee$-systems”, Phys. Lett. A, 285 (2001), 339–349 ; math-ph/0105003 | DOI | MR | Zbl
[4] Cherednik I., “A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras”, Invent. Math., 66 (1991), 411–431 | DOI | MR
[5] Dunkl C., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[6] Dubrovin B., “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, eds. M. Francaviglia and S. Greco, Springer, Berlin, 1996, 120–348 ; hep-th/9407018 | MR | Zbl
[7] Dubrovin B., “On almost duality for Frobenius manifolds”, Geometry, Topology, and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 75–132 ; math.DG/0307374 | MR | Zbl
[8] Eichler M., Zagier D., The theory of Jacobi forms, Progress in Mathematics, 55, Birkhäuser Boston, Inc., Boston, MA, 1985 | MR | Zbl
[9] Calaque D., Enriques B., Etingof P., Universal KZB equations I: the elliptic case, math.QA/0702670 | MR
[10] Feigin M., Trigonometric solutions of WDVV equations and generalized Calogero–Moser–Sutherland systems, arXiv:0802.0532 | MR
[11] Feigin M., Veselov A. P., “On the geometry of $\vee$-systems”, Geometry Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 111–123 ; arXiv:0710.5729 | MR | Zbl
[12] Frobenius G., Stickelberger L., “Über die Addition und Multiplication der elliptischen Functionen”, J. Reine Angew. Math., 88 (1880), 146–184
[13] Heckman G. J., “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103 (1991), 341–350 | DOI | MR | Zbl
[14] Levin A., “Elliptic polylogarithms: an analytic theory”, Compositio Math., 106 (1997), 267–282 | DOI | MR | Zbl
[15] Marshakov A., Mironov A., Morozov A., “A WDVV-like equation in $N=2$ SUSY Yang–Mills theory”, Phys. Lett. B, 389 (1996), 43–52 ; hep-th/9607109 | DOI | MR
[16] Martini R.,Hoevenaars L. K., “Trigonometric solutions of the WDVV equations from root systems”, Lett. Math. Phys., 65 (2003), 15–18 ; math-ph/0302059 | DOI | MR | Zbl
[17] Riley A., Strachan I. A. B., “Duality for Jacobi group orbit spaces and elliptic solutions of the WDVV equations”, Lett. Math. Phys., 77 (2006), 221–234 ; math-ph/0511048 | DOI | MR | Zbl
[18] Satake I., Frobenius manifolds for elliptic root systems, math.AG/0611553
[19] Strachan I. A. B., Weyl groups and elliptic solutions of the WDVV equations, arXiv:0802.0388
[20] Ramakrishnan D., “On the monodromy of higher logarithms”, Proc. Amer. Math. Soc., 85 (1982), 596–599 | DOI | MR | Zbl
[21] Wirthmüller K., “Root systems and Jacobi forms”, Compositio Math., 82 (1992), 293–354 | MR | Zbl
[22] Whittaker E. T., Watson G. N., A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, reprint of 4th ed. (1927), Cambridge University Press, Cambridge, 1996 | MR | Zbl
[23] Zagier D., “The Bloch–Wigner–Ramakrishnan polylogarithm function”, Math. Ann., 286 (1990), 613–624 | DOI | MR | Zbl