Nonlocal Operational Calculi for Dunkl Operators
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The one-dimensional Dunkl operator $D_k$ with a non-negative parameter $k$, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of $D_k$, satisfying this condition is studied. An operational calculus of Mikusiński type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations $P(D_k)u=f$ with a given polynomial $P$ is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
Keywords: Dunkl operator; right inverse operator; Dunkl–Appell polynomials; convolution multiplier; multiplier fraction; Dunkl equation; nonlocal Cauchy problem; Heaviside algorithm; mean-periodic function.
@article{SIGMA_2009_5_a29,
     author = {Ivan H. Dimovski and Valentin Z. Hristov},
     title = {Nonlocal {Operational} {Calculi} for {Dunkl} {Operators}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a29/}
}
TY  - JOUR
AU  - Ivan H. Dimovski
AU  - Valentin Z. Hristov
TI  - Nonlocal Operational Calculi for Dunkl Operators
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a29/
LA  - en
ID  - SIGMA_2009_5_a29
ER  - 
%0 Journal Article
%A Ivan H. Dimovski
%A Valentin Z. Hristov
%T Nonlocal Operational Calculi for Dunkl Operators
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a29/
%G en
%F SIGMA_2009_5_a29
Ivan H. Dimovski; Valentin Z. Hristov. Nonlocal Operational Calculi for Dunkl Operators. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a29/

[1] Betancor J. J., Sifi M., Trimèche K., “Intertwining operator and the commutators of the Dunkl operator on $\mathbb C$”, Math. Sci. Res. J., 10:3 (2006), 66–78 | MR | Zbl

[2] Bittner R., “Operational calculus in linear spaces”, Studia Math., 20 (1961), 1–18 | MR | Zbl

[3] Ben Salem N., Kallel S., “Mean-periodic functions associated with the Dunkl operators”, Integral Transforms Spec. Funct., 15 (2004), 155–179 | DOI | MR | Zbl

[4] Delsarte J., “Les fonctions moyenne-périodiques”, J. Math. Pures Appl., 14 (1935), 403–453

[5] Dimovski I. H., Convolutional calculus, Kluwer Academic Publishers Group, Dordrecht, 1990 | MR | Zbl

[6] Dimovski I. H., “Nonlocal operational calculi”, Proc. Steklov Inst. Math., 203, no. 3, 1995, 53–65 | MR

[7] Dimovski I. H., Hristov V. Z., Sifi M., “Commutants of the Dunkl operators in $C(\mathbb R)$”, Fract. Calc. Appl. Anal., 9 (2006), 195–213 | MR | Zbl

[8] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl

[9] Larsen R., An introduction to the theory of multipliers, Springer-Verlag, New York – Heidelberg, 1971 | MR | Zbl

[10] Mikusiński J., Operational calculus, I, Warszawa, 1967

[11] Mourou M. A., Trimèche K., “Opérateurs de transmutation et théorème de Paley–Wiener associés à un opérateur aux dérivées et différences sur $\mathbb R$”, C. R. Acad. Sci. Paris Ser. I Math., 332 (2001), 397–400 | MR | Zbl

[12] Przeworska-Rolewicz D., “Algebraic theory of right inverse operators”, Studia Math., 48 (1973), 129–144 | MR | Zbl

[13] Rösler M., “Bessel-type signed hypergroups on $\mathbb R$”, Probability Measures on Groups and Related Structures, XI (Oberwolfach, 1994), World Sci. Publ., River Edge, NJ, 1995, 292–304 | MR | Zbl

[14] Rösler M., Voit M., “Biorthogonal polynomials associated with reflection groups and a formula of Macdonald”, J. Comput. Appl. Math., 99 (1998), 337–351 ; q-alg/9711004 | DOI | MR | Zbl

[15] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transforms Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl

[16] Xu Y., “An integral formula for generalized Gegenbauer polynomials and Jacobi polynomials”, Adv. in Appl. Math., 29 (2002), 328–341 | DOI | MR