@article{SIGMA_2009_5_a28,
author = {Alexander Chervov and Gregorio Falqui and Leonid Rybnikov},
title = {Limits of {Gaudin} {Systems:} {Classical} and {Quantum} {Cases}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a28/}
}
TY - JOUR AU - Alexander Chervov AU - Gregorio Falqui AU - Leonid Rybnikov TI - Limits of Gaudin Systems: Classical and Quantum Cases JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a28/ LA - en ID - SIGMA_2009_5_a28 ER -
Alexander Chervov; Gregorio Falqui; Leonid Rybnikov. Limits of Gaudin Systems: Classical and Quantum Cases. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a28/
[1] Babelon O., Bernard D., Talon M., Introduction to classical integrable systems, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003 | MR | Zbl
[2] Chernyakov Yu. B., “Integrable systems, obtained by point fusion from rational and elliptic Gaudin systems”, Theoret. and Math. Phys., 141 (2004), 1361–1380 ; hep-th/0311027 | DOI | MR | Zbl
[3] Chervov A., Falqui G., “Manin matrices and Talalaev's formula”, J. Phys. A: Math. Theor., 41 (2008), 194006, 28 pp., ages ; arXiv:0711.2236 | DOI | MR | Zbl
[4] Chervov A., Falqui G., Rybnikov L., Limits of Gaudin algebras, quantization of bending flows, Jucys–Murphy elements and Gelfand–Tsetlin bases, arXiv:0710.4971
[5] Chervov A., Falqui G., Rubtsov V., “Algebraic properties of Manin matrices I”, Adv. Appl. Math., 43:3 (2009), 239–315 ; arXiv:0901.0235 | DOI | MR | Zbl
[6] Chervov A., Rybnikov L., Talalaev D., Rational Lax operators and their quantization, hep-th/0404106
[7] Chervov A., Talalaev D., Universal G-oper and Gaudin eigenproblem, hep-th/0409007
[8] Chervov A., Talalaev D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, hep-th/0604128
[9] Dickey L., Soliton equations and Hamiltonian systems, 2nd ed., Advanced Series in Mathematical Physics, 26, World Scientific Publishing Co., Inc., River Edge, NJ, 2003 | MR | Zbl
[10] Enriquez B., Rubtsov V., “Hitchin systems, higher Gaudin operators and $R$-matrices”, Math. Res. Lett., 3 (1996), 343–357 ; alg-geom/9503010 | MR | Zbl
[11] Falqui G., Musso F., “Gaudin models and bending flows: a geometrical point of view”, J. Phys. A: Math. Gen., 36 (2003), 11655–11676 ; nlin.SI/0306005 | DOI | MR | Zbl
[12] Falqui G., Musso F., “Bi-Hamiltonian geometry and separation of variables for Gaudin models: a case study”, SPT 2002: Symmetry and Perturbation Theory (Cala Gonone), eds. S. Abenda, G. Gaeta and S. Walcher, World Sci. Publ., River Edge, NJ, 2002, 42–50 ; nlin.SI/0306008 | MR
[13] Falqui G., Musso F., “On separation of variables for homogeneous ${\rm sl}(r)$ Gaudin systems”, Math. Phys. Anal. Geom., 9 (2006), 233–262 ; nlin.SI/0402026 | DOI | MR | Zbl
[14] Falqui G., Musso F., “Quantisation of bending flows”, Czechoslovak J. Phys., 56 (2006), 1143–1148 ; nlin.SI/0610003 | DOI | MR | Zbl
[15] Falqui G., Pedroni M., “Separation of variables for bi-Hamiltonian systems”, Math. Phys. Anal. Geom., 6 (2003), 139–179 ; nlin.SI/0204029 | DOI | MR | Zbl
[16] Flaschka H., Millson J., “Bending flows for sums of rank one matrices”, Canad. J. Math., 57 (2005), 114–158 ; math.SG/0108191 | MR | Zbl
[17] Feigin B., Frenkel E., “Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras”, Infinite Analysis, Part A, B (Kyoto, 1991), Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 197–215 | MR
[18] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62 ; hep-th/9402022 | DOI | MR | Zbl
[19] Feigin B., Frenkel E., Toledano-Laredo V., Gaudin model with irregular singularities, math.QA/0612798
[20] Frenkel E., “Affine algebras, Langlands duality and Bethe ansatz”, Proceedings XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 606–642 ; q-alg/9506003 | MR | Zbl
[21] Gaudin M., La fonction d'onde de Bethe, Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris, 1983 | MR | Zbl
[22] Gel'fand I. M., Zakharevich I., “Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures”, Selecta Math. (N.S.), 6 (2000), 131–183 ; math.DG/9903080 | DOI | MR | Zbl
[23] Jurčo B., “Classical Yang–Baxter equations and quantum integrable systems”, J. Math. Phys., 30 (1989), 1289–1293 | DOI | MR | Zbl
[24] Kapovich M., Millson J., “The symplectic geometry of polygons in Euclidean space”, J. Differential Geom., 44 (1996), 479–513 | MR | Zbl
[25] Kuznetsov V. B., “Quadrics on Riemannian spaces of constant curvature. Separation of variables and a connection with the Gaudin magnet”, Theoret. and Math. Phys., 91 (1992), 385–404 | DOI | MR | Zbl
[26] Manin Yu. I., Quantum groups and noncommutative geometry,, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988 | MR | Zbl
[27] Musso F., Petrera M., Ragnisco O., “Algebraic extensions of Gaudin models”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 482–498 ; nlin.SI/0410016 | DOI | MR
[28] Pedroni M., Vanhaecke P., “A Lie algebraic generalization of the Mumford system, its symmetries and its multi-Hamiltonian structure”, Regul. Chaotic Dyn., 3 (1998), 132–160 | DOI | MR | Zbl
[29] Reyman A. G., Semenov-Tian-Shansky M. A., “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, 16, eds. V. I. Arnold and S. P. Novikov, Springer, Berlin, 1994, 116–225 | MR
[30] Rybnikov L. G., “The shift of invariants method and the Gaudin model”, Func. Anal. Appl., 40 (2006), 188–199 ; math.RT/0606380 | DOI | MR | Zbl
[31] Rybnikov L. G., Uniqueness of higher Gaudin Hamiltonians, math.QA/0608588 | MR
[32] Sierra G., “Integrability and conformal symmetry in BCS model”, Statistical Field Theories (Como, 2001), NATO Sci. Ser. II Math. Phys. Chem., 73, Kluwer Acad. Publ., Dordrecht, 2002, 317–328 ; hep-th/0111114 | MR
[33] Sklyanin E. K., “Separation of variables – new trends”, Quantum Field Theory, Integrable Models and Beyond (Kyoto, 1994), Progr. Theoret. Phys. Suppl., 118, 1995, 35–60 ; solv-int/9504001 | MR | Zbl
[34] Talalaev D., “Quantization of the Gaudin system”, Funct. Anal. Appl., 40 (2006), 73–77 ; hep-th/0404153 | DOI | MR | Zbl