@article{SIGMA_2009_5_a27,
author = {Ian M. Musson and Georges Pinczon and Rosane Ushirobira},
title = {Hochschild {Cohomology} and {Deformations} of {Clifford{\textendash}Weyl} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a27/}
}
TY - JOUR AU - Ian M. Musson AU - Georges Pinczon AU - Rosane Ushirobira TI - Hochschild Cohomology and Deformations of Clifford–Weyl Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a27/ LA - en ID - SIGMA_2009_5_a27 ER -
%0 Journal Article %A Ian M. Musson %A Georges Pinczon %A Rosane Ushirobira %T Hochschild Cohomology and Deformations of Clifford–Weyl Algebras %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a27/ %G en %F SIGMA_2009_5_a27
Ian M. Musson; Georges Pinczon; Rosane Ushirobira. Hochschild Cohomology and Deformations of Clifford–Weyl Algebras. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a27/
[1] Alev J., Farinati M. A., Lambre T., Solotar A. L., “Homologie des invariants d'une algèbre de Weyl sous l'action d'un groupe fini”, J. Algebra, 232 (2000), 564–577 | DOI | MR | Zbl
[2] Arnal D., Benamor H., Pinczon G., “The structure of $\mathfrak{sl}(2,1)$-supersymmetry: irreducible representations and primitive ideals”, Pacific J. Math., 165 (1994), 17–49 | MR | Zbl
[3] Arnaudon D., Bauer L., Frappat L., “On Casimir's ghost”, Comm. Math. Phys., 187 (1997), 429–439 ; q-alg/9605021 | DOI | MR | Zbl
[4] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.,, “Deformation theory and quantization. I. Deformations of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[5] Behr E. J., “Enveloping algebras of Lie superalgebras”, Pacific J. Math., 130 (1987), 9–25 | MR | Zbl
[6] Djoković D.Ž., Hochschild G., “Semisimplicity of $2$-graded Lie algebras. II”, Illinois J. Math., 20 (1976), 134–143 | MR | Zbl
[7] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348 ; math.AG/0011114 | DOI | MR | Zbl
[8] Flato M., Fronsdal C., “Parastatistics, highest weight ${\mathfrak{osp}}(N,\infty)$ modules, singleton statistics and confinement”, J. Geom. Phys., 6 (1989), 293–309 | DOI | MR | Zbl
[9] Fulton W., Harris J., Representation theory. A first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | MR | Zbl
[10] Gerstenhaber M., Schack D. S., “Algebraic cohomology and deformation theory”, Deformation Theory of Algebras and Structures and Applications, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 247, eds. M. Hazewinkel and M. Gerstenhaber, Kluwer Academic Publishers Group, Dordrecht, 1988 | MR | Zbl
[11] Gerstenhaber M., “On the deformation of rings and algebras”, Ann. of Math. (2), 79 (1964), 59–103 | DOI | MR | Zbl
[12] Green H. S., “A generalized method of field quantization”, Phys. Rev., 90 (1953), 270–273 | DOI | MR | Zbl
[13] Lesimple M., Pinczon G., “Deformations of the metaplectic representations”, J. Math. Phys., 42 (2001), 1887–1899 | DOI | MR | Zbl
[14] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, Springer-Verlag, Berlin, 1992 | MR | Zbl
[15] McConnell J. C., Robson J. C., Noncommutative Noetherian rings, With the cooperation of L. W. Small, revised ed., Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001 | MR | Zbl
[16] Montgomery S., “Constructing simple Lie superalgebras from associated graded algebras”, J. Algebra, 195 (1997), 558–579 | DOI | MR | Zbl
[17] Musson I. M., “Some Lie superalgebras associated to the Weyl algebras”, Proc. Amer. Math. Soc., 127 (1999), 2821–2827 | DOI | MR | Zbl
[18] Palev T., “Para-Bose and para-Fermi operators as generators of orthosymplectic Lie superalgebras”, J. Math. Phys., 23 (1982), 1100–1102 | DOI | MR
[19] Palev T., “Algebraic structure of the Greens's ansatz and its $q$-deformed analogue”, J. Phys. A: Math. Gen., 27 (1994), 7373–7385 ; hep-th/9406066 | DOI | MR | Zbl
[20] Pinczon G., “The enveloping algebra of the Lie superalgebra ${\mathfrak{osp}}(1,2)$”, J. Algebra, 132 (1990), 219–242 | DOI | MR | Zbl
[21] Pinczon G., “On two theorems about symplectic reflection algebras”, Lett. Math. Phys., 82 (2007), 237–253 | DOI | MR | Zbl
[22] Pinczon G., Ushirobira R., “New applications of graded Lie algebras to Lie algebras, generalized Lie algebras, and cohomology”, J. Lie Theory, 17 (2007), 633–667 ; math.RT/0507387 | MR | Zbl
[23] Pinczon G., Ushirobira R., “Supertrace and superquadratic Lie structure on the Weyl algebra, and applications to formal inverse Weyl transform”, Lett. Math. Phys., 74 (2005), 263–291 ; math.RT/0507092 | DOI | MR | Zbl
[24] Samelson H., Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, 23, Van Nostrand Reinhold Co., New York – London – Melbourne, 1969 | MR | Zbl
[25] Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in Mathematics, 716, Springer-Verlag, Berlin, 1979 | MR | Zbl
[26] Sridharan R., “Filtered algebras and representations of Lie algebras”, Trans. Amer. Math. Soc., 100 (1961), 530–550 | DOI | MR | Zbl
[27] Sternheimer D., “Quantization is deformation”, Contemp. Math., 391, 2005, 331–352 | MR | Zbl
[28] Wigner E. P., “Do the equations of motion determine the quantum mechanical commutation relations?”, Phys. Rev., 77 (1950), 711–712 | DOI | MR | Zbl