Bäcklund Transformations for First and Second Painlevé Hierarchies
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give Bäcklund transformations for first and second Painlevé hierarchies. These Bäcklund transformations are generalization of known Bäcklund transformations of the first and second Painlevé equations and they relate the considered hierarchies to new hierarchies of Painlevé-type equations.
Mots-clés : Painlevé hierarchies; Bäcklund transformations.
@article{SIGMA_2009_5_a23,
     author = {Ayman Hashem Sakka},
     title = {B\"acklund {Transformations} for {First} and {Second} {Painlev\'e} {Hierarchies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/}
}
TY  - JOUR
AU  - Ayman Hashem Sakka
TI  - Bäcklund Transformations for First and Second Painlevé Hierarchies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/
LA  - en
ID  - SIGMA_2009_5_a23
ER  - 
%0 Journal Article
%A Ayman Hashem Sakka
%T Bäcklund Transformations for First and Second Painlevé Hierarchies
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/
%G en
%F SIGMA_2009_5_a23
Ayman Hashem Sakka. Bäcklund Transformations for First and Second Painlevé Hierarchies. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/

[1] Airault H., “Rational solutions of Painlevé equations”, Stud. Appl. Math., 61 (1979), 31–53 | MR | Zbl

[2] Kudryashov N. A., “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224 (1997), 353–360 | DOI | MR

[3] Hone A. N. W., “Non-autonomous Hénon–Heiles systems”, Phys. D, 118 (1998), 1–16 ; solv-int/9703005 | DOI | MR | Zbl

[4] Kudryashov N. A., Soukharev M. B., “Uniformization and transcendence of solutions for the first and second Painlevé hierarchies”, Phys. Lett. A, 237 (1998), 206–216 | DOI | MR | Zbl

[5] Kudryashov N. A., “Fourth-order analogies of the Painlevé equations”, J. Phys. A: Math. Gen., 35 (2002), 4617–4632 | DOI | MR | Zbl

[6] Kudryashov N. A., “Amalgamations of the Painlevé equations”, J. Math. Phys., 44 (2003), 6160–6178 | DOI | MR | Zbl

[7] Muğan U., Jrad F., “Painlevé test and the first Painlevé hierarchy”, J. Phys. A: Math. Gen., 32 (1999), 7933–7952 | DOI | MR

[8] Muğan U., Jrad F., “Painlevé test and higher order differntial equations”, J. Nonlinear Math. Phys., 9 (2002), 282–310 ; nlin.SI/0301043 | DOI | MR

[9] Gordoa P. R., Pickering A., “Nonisospectral scattering problems: a key to integrable hierarchies”, J. Math. Phys., 40 (1999), 5749–5786 | DOI | MR | Zbl

[10] Gordoa P. R., Joshi N., Pickering A., “On a generalized $2+1$ dispersive water wave hierarchy”, Publ. Res. Inst. Math. Sci., 37 (2001), 327–347 | DOI | MR | Zbl

[11] Sakka A., “Linear problems and hierarchies of Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 025210, 19 pp., ages | DOI | MR | Zbl

[12] Fokas A. S., Ablowitz M. J., “On a unified approach to transformations and elementary solutions of Painlevé equations”, J. Math. Phys., 23 (1982), 2033–2042 | DOI | MR | Zbl

[13] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P$_{\rm II}$ and P$_{\rm IV}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl

[14] Gordoa P. R., Joshi N., Pickering A., “Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations”, Nonlinearity, 12 (1999), 955–968 ; solv-int/9904023 | DOI | MR | Zbl

[15] Gromak V., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | MR | Zbl

[16] Clarkson P. A., Joshi N., Pickering A., “Bäcklund transformations for the second Pianlevé hierarchy: a modified truncation approach”, Inverse Problems, 15 (1999), 175–187 ; solv-int/9811014 | DOI | MR | Zbl

[17] Cosgrove C. M., Scoufis G., “Painlevé classification of a class of differential equations of the second order and second degree”, Stud. Appl. Math., 88 (1993), 25–87 | MR | Zbl

[18] Muğan U., Sakka A., “Second-order second-degree Painlevé equations related with Painlevé I–VI equations and Fuchsian-type transformations”, J. Math. Phys., 40 (1999), 3569–3587 | DOI | MR | Zbl

[19] Sakka A., Elshamy S., “Bäcklund transformations for fourth-order Painlevé-type equations”, The Islamic University Journal, Natural Science Series, 14 (2006), 105–120

[20] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. I. Bureau symbol $P2$”, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl

[21] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$”, Stud. Appl. Math., 116 (2006), 321–413 | DOI | MR | Zbl

[22] Sakka A., “Bäcklund transformations for fifth-order Painlevé equations”, Z. Naturforsch. A, 60 (2005), 681–686

[23] Sakka A., “Second-order fourth-degree Painlevé-type equations”, J. Phys. A: Math. Gen., 34 (2001), 623–631 | DOI | MR | Zbl