@article{SIGMA_2009_5_a23,
author = {Ayman Hashem Sakka},
title = {B\"acklund {Transformations} for {First} and {Second} {Painlev\'e} {Hierarchies}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/}
}
Ayman Hashem Sakka. Bäcklund Transformations for First and Second Painlevé Hierarchies. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a23/
[1] Airault H., “Rational solutions of Painlevé equations”, Stud. Appl. Math., 61 (1979), 31–53 | MR | Zbl
[2] Kudryashov N. A., “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224 (1997), 353–360 | DOI | MR
[3] Hone A. N. W., “Non-autonomous Hénon–Heiles systems”, Phys. D, 118 (1998), 1–16 ; solv-int/9703005 | DOI | MR | Zbl
[4] Kudryashov N. A., Soukharev M. B., “Uniformization and transcendence of solutions for the first and second Painlevé hierarchies”, Phys. Lett. A, 237 (1998), 206–216 | DOI | MR | Zbl
[5] Kudryashov N. A., “Fourth-order analogies of the Painlevé equations”, J. Phys. A: Math. Gen., 35 (2002), 4617–4632 | DOI | MR | Zbl
[6] Kudryashov N. A., “Amalgamations of the Painlevé equations”, J. Math. Phys., 44 (2003), 6160–6178 | DOI | MR | Zbl
[7] Muğan U., Jrad F., “Painlevé test and the first Painlevé hierarchy”, J. Phys. A: Math. Gen., 32 (1999), 7933–7952 | DOI | MR
[8] Muğan U., Jrad F., “Painlevé test and higher order differntial equations”, J. Nonlinear Math. Phys., 9 (2002), 282–310 ; nlin.SI/0301043 | DOI | MR
[9] Gordoa P. R., Pickering A., “Nonisospectral scattering problems: a key to integrable hierarchies”, J. Math. Phys., 40 (1999), 5749–5786 | DOI | MR | Zbl
[10] Gordoa P. R., Joshi N., Pickering A., “On a generalized $2+1$ dispersive water wave hierarchy”, Publ. Res. Inst. Math. Sci., 37 (2001), 327–347 | DOI | MR | Zbl
[11] Sakka A., “Linear problems and hierarchies of Painlevé equations”, J. Phys. A: Math. Theor., 42 (2009), 025210, 19 pp., ages | DOI | MR | Zbl
[12] Fokas A. S., Ablowitz M. J., “On a unified approach to transformations and elementary solutions of Painlevé equations”, J. Math. Phys., 23 (1982), 2033–2042 | DOI | MR | Zbl
[13] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P$_{\rm II}$ and P$_{\rm IV}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl
[14] Gordoa P. R., Joshi N., Pickering A., “Mappings preserving locations of movable poles: a new extension of the truncation method to ordinary differential equations”, Nonlinearity, 12 (1999), 955–968 ; solv-int/9904023 | DOI | MR | Zbl
[15] Gromak V., Laine I., Shimomura S., Painlevé differential equations in the complex plane, de Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | MR | Zbl
[16] Clarkson P. A., Joshi N., Pickering A., “Bäcklund transformations for the second Pianlevé hierarchy: a modified truncation approach”, Inverse Problems, 15 (1999), 175–187 ; solv-int/9811014 | DOI | MR | Zbl
[17] Cosgrove C. M., Scoufis G., “Painlevé classification of a class of differential equations of the second order and second degree”, Stud. Appl. Math., 88 (1993), 25–87 | MR | Zbl
[18] Muğan U., Sakka A., “Second-order second-degree Painlevé equations related with Painlevé I–VI equations and Fuchsian-type transformations”, J. Math. Phys., 40 (1999), 3569–3587 | DOI | MR | Zbl
[19] Sakka A., Elshamy S., “Bäcklund transformations for fourth-order Painlevé-type equations”, The Islamic University Journal, Natural Science Series, 14 (2006), 105–120
[20] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. I. Bureau symbol $P2$”, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl
[21] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. II. Bureau symbol $P1$”, Stud. Appl. Math., 116 (2006), 321–413 | DOI | MR | Zbl
[22] Sakka A., “Bäcklund transformations for fifth-order Painlevé equations”, Z. Naturforsch. A, 60 (2005), 681–686
[23] Sakka A., “Second-order fourth-degree Painlevé-type equations”, J. Phys. A: Math. Gen., 34 (2001), 623–631 | DOI | MR | Zbl