@article{SIGMA_2009_5_a22,
author = {Wei Khim Ng and Rajesh R. Parwani},
title = {Nonlinear {Dirac} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a22/}
}
Wei Khim Ng; Rajesh R. Parwani. Nonlinear Dirac Equations. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a22/
[1] Schrödinger E., Collected papers on wave mechanics, Blackie Son, London, 1928
[2] Bolinger J. J., Heinzen D. J., Itano W. M., Gilbert S. L., Wineland D. J., “Test of the linearity of quantum mechanics by rf spectroscopy of the $^9\mathrm Be^+$ ground state”, Phys. Rev. Lett., 63 (1989), 1031–1034 | DOI
[3] Chupp T., Hoare R., “Coherence in freely precessing $^{21}\mathrm Ne$ and a test of linearity of quantum mechanics”, Phys. Rev. Lett., 64 (1990), 2261–2264 | DOI
[4] Walsworth R. L., Silvera I. F., Mattison E. M., Vessot R. F. C., “Test of the linearity of quantum mechanics in an atomic system with a hydrogen maser”, Phys. Rev. Lett., 64 (1990), 2599–2602 | DOI
[5] Majumder P. K., Venema B. J., Lamoreaux S. K., Heckel B. R., “Test of the linearity of quantum mechanics in optically pumped $^{201}\mathrm Hg$”, Phys. Rev. Lett., 65 (1990), 2931–2934 | DOI
[6] Akhmediev N. N., Ankiewicz A., Solitons: nonlinear pulses and beams, Chapman and Hall, 1997
[7] Pethick C., Smith H., Bose–Einstein condensation in dilute gases, Cambridge University Press, 2001
[8] Heisenberg W., “Quantum theory of fields and elementary particles”, Rev. Mod. Phys., 29 (1957), 269–278 | DOI | MR | Zbl
[9] Ionescu D. C., Reinhardt R., Muller B., Greiner W., “Nonlinear extensions of the Dirac equation and their implications in QED”, Phys. Rev. A, 38 (1988), 616–620 | DOI
[10] Zecca A., “Dirac equation in space-time with torsion”, Internat. J. Theoret. Phys., 41 (2002), 421–428 | DOI | MR | Zbl
[11] Esteban M. J., Sere E., “An overview on linear and nonlinear Dirac equations”, Discrete Contin. Dyn. Syst., 8 (2002), 381–397 | DOI | MR | Zbl
[12] Esteban M. J., Sere E., “Stationary states of the nonlinear Dirac equation: a variational approach”, Comm. Math. Phys., 171 (1995), 323–350 | DOI | MR | Zbl
[13] Bialynicki-Birula I., Mycielski J., “Nonlinear wave mechanics”, Ann. Physics, 100 (1976), 62–93 | DOI | MR
[14] Kibble T. W. B., “Relativistic models of nonlinear quantum mechanics”, Comm. Math. Phys., 64 (1978), 73–82 | DOI | MR
[15] Weinberg S., “Testing quantum mechanics”, Ann. Physics, 194 (1989), 336–386 | DOI | MR
[16] Doebner H. D., Goldin G. A., Nattermann P., “Gauge Transformations in quantum mechanics and the unification of nonlinear Schrödinger equations”, J. Math. Phys., 40 (1999), 49–63 ; quant-ph/9709036 | DOI | MR | Zbl
[17] Parwani R., “Why is Schrödinger's equation linear?”, Braz. J. Phys., 35 (2005), 494–496 ; quant-ph/0412192 | DOI
[18] Parwani R., “An information theoretic link between space-time symmetries and quantum linearity”, Ann. Physics, 315 (2005), 419–452 ; hep-th/0401190 | DOI | MR | Zbl
[19] Parwani R., “Information measures for inferring quantum mechanics and its deformations”, J. Phys. A: Math. Gen., 38 (2005), 6231–6237 ; quant-ph/0408185 | DOI | MR | Zbl
[20] Parwani R., “A physical axiomatic approach to Schrödinger's equation”, Internat. J. Theoret. Phys., 45 (2006), 1901–1933 ; quant-ph/0508125 | DOI | MR
[21] Doebner H.D., Zhdanov R., Nonlinear Dirac equations and nonlinear gauge transformations, quant-ph/0304167
[22] Fushchich W. I., Zhdanov R. Z., “Symmetry and exact solutions of nonlinear spinor equations”, Phys. Rep., 172 (1989), 123–174 | DOI | MR
[23] Fushchych W. I., Zhdanov R. Z., Symmetries and exact solutions of nonlinear Dirac equations, Mathematical Ukraina Publisher, Kyiv, 1997; math-ph/0609052
[24] Bogoslovsky G. Yu., “Lorentz symmetry violation without violation of relativistic symmetry”, Phys. Lett. A, 350 (2006), 5–10 ; hep-th/0511151 | DOI
[25] Bogoslovsky G. Yu., Goenner H. F., “Concerning the generalized Lorentz symmetry and the generalization of the Dirac equation”, Phys. Lett. A, 323 (2004), 40–47 ; hep-th/0402172 | DOI | MR | Zbl
[26] Bogoslovsky G. Yu., “A special-relativistic theory of the locally anisotropic space-time”, Nuovo Cimento B, 40 (1977), 99–134 | DOI
[27] Itzykson C., Zuber J. B., Quantum field theory, McGraw-Hill International Book Co., New York, 1980 | MR
[28] Kostelecky V. A., “Gravity, Lorentz violation, and the standard model”, Phys. Rev. D, 69 (2004), 105009, 20 pp., ages ; hep-th/0312310 | DOI
[29] Bohm D., Hiley B. J., The undivided universe. An ontological interpretation of quantum theory, Routledge, London, 2003 | MR
[30] Moshinsky M., Nikitin A., “The Many body problem in relativistic quantum mechanics”, Rev. Mexicana Fís., 50 (2005), 66–73 ; hep-ph/0502028 | MR
[31] Goldstein S., Tumulka R., “Opposite arrows of time can reconcile relativity and nonlocality”, Classical Quantum Gravity, 20 (2003), 557–564 ; quant-ph/0105040 | DOI | MR | Zbl
[32] Svetlichny G., “On linearity of separating multiparticle differential Schrödinger operators for identical particles”, J. Math. Phys., 45 (2004), 959–964 ; quant-ph/0308001 | DOI | MR | Zbl
[33] Goldin G. A., Svetlichny G., “Nonlinear Schrödinger equations and the separation property”, J. Math. Phys., 35 (1994), 3322–3332 | DOI | MR | Zbl
[34] Parwani R., Tan H. S., “Exact solutions of a non-polynomially nonlinear Schrödinger equation”, Phys. Lett. A, 363 (2007), 197–201 ; quant-ph/0605123 | DOI | MR
[35] Parwani R., Tabia G., “Universality in an information-theoretic motivated nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 40 (2007), 5621–5635 ; quant-ph/0607222 | DOI | MR | Zbl
[36] Greenberg O. W., “CPT violation implies violation of Lorentz invariance”, Phys. Rev. Lett., 89 (2002), 231602, 4 pp., ages ; hep-ph/0201258 | DOI
[37] Colladay D., Kostelecky V. A., “CPT violation and the standard model”, Phys. Rev. D, 55 (1997), 6760–6774 ; hep-ph/9703464 | DOI
[38] Lehnert R., “Dirac theory within the standard-model extension”, J. Math. Phys., 45 (2004), 3399–3412 ; hep-ph/0401084 | DOI | MR | Zbl
[39] Jacobson T., Liberate S., Mattingly D., “Lorentz violation at high energy: concepts, phenomena, and astrophysical constraints”, Ann. Physics, 321 (2006), 150–196 ; astro-ph/0505267 | DOI | Zbl
[40] Vucetich H., Testing Lorentz invariance violation in quantum gravity theories, gr-qc/0502093
[41] Ng W. K., Parwani R., Nonlinear Dirac equations,, arXiv:0707.1553v1 | MR
[42] Ng W. K., Parwani R., Nonlinear Schrödinger–Pauli equations, arXiv:0807.1877
[43] Ng W. K., Parwani R., Probing quantum nonlinearities through neutrino oscillations, arXiv:0805.3015
[44] Kent A., “Nonlinearity without superluminality”, Phys. Rev. A, 72 (2005), 012108, 4 pp., ages ; quant-ph/0204106 | DOI | MR
[45] Holman M., On arguments for linear quantum dynamics, quant-ph/0612209
[46] Geim A. K., Novoselov K. S., “The rise of graphene”, Nature Materials, 6 (2007), 183–191 ; cond-mat/0702595 | DOI