Conformal Killing–Yano Tensors on Manifolds with Mixed 3-Structures
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show the existence of conformal Killing–Yano tensors on a manifold endowed with a mixed 3-Sasakian structure.
Keywords: Killing–Yano tensor; mixed 3-structure; Einstein space.
@article{SIGMA_2009_5_a21,
     author = {Stere Ianus and Mihai Visinescu and Gabriel Eduard V{\^\i}lcu},
     title = {Conformal {Killing{\textendash}Yano} {Tensors} on {Manifolds} with {Mixed} {3-Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a21/}
}
TY  - JOUR
AU  - Stere Ianus
AU  - Mihai Visinescu
AU  - Gabriel Eduard Vîlcu
TI  - Conformal Killing–Yano Tensors on Manifolds with Mixed 3-Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a21/
LA  - en
ID  - SIGMA_2009_5_a21
ER  - 
%0 Journal Article
%A Stere Ianus
%A Mihai Visinescu
%A Gabriel Eduard Vîlcu
%T Conformal Killing–Yano Tensors on Manifolds with Mixed 3-Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a21/
%G en
%F SIGMA_2009_5_a21
Stere Ianus; Mihai Visinescu; Gabriel Eduard Vîlcu. Conformal Killing–Yano Tensors on Manifolds with Mixed 3-Structures. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a21/

[1] Bejancu A., Duggal K. L., Lightlike submanifolds of semi-Riemannian manifolds and its application, Kluwer, Dortrecht, 1996 | MR

[2] Belgun F., Moroianu A., Semmelmann U., “Killing forms on symmetric spaces”, Differential Geom. Appl., 24 (2006), 215–222 ; math.DG/0409104 | DOI | MR | Zbl

[3] Benenti S., “Separable dynamical systems: characterization of separability structures on Riemannian manifolds”, Rep. Math. Phys., 12 (1977), 311–316 | DOI | MR | Zbl

[4] Blair D. E., “Almost contact manifolds with Killing structure tensors”, Pacific J. Math., 39 (1971), 285–292 | MR | Zbl

[5] Blair D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin – New York, 1976 | MR | Zbl

[6] Boyer C., Galicki K., “3-Sasakian manifolds, in Surveys”, Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., 6, Int. Press, Boston, MA, 1999, 123–184 ; hep-th/9810250 | MR | Zbl

[7] Caldarella A., Pastore A. M., Mixed 3-Sasakian structures and curvature, arXiv:0803.1953 | Zbl

[8] Cariglia M., “Quantum mechanics of Yano tensors: Dirac equation in curved spacetime”, Classical Quantum Gravity, 21 (2004), 1051–1077 ; hep-th/0305153 | DOI | MR | Zbl

[9] Carter B., “Killing tensor quantum numbers and conserved currents in curved spaces”, Phys. Rev. D, 16 (1977), 3395–3414 | DOI | MR

[10] Carter B., McLenaghan R. G., “Generalized total angular momentum operator for Dirac equation in curved space-time”, Phys. Rev. D, 19 (1979), 1093–1097 | DOI | MR

[11] Cortés V., Mayer C., Mohaupt T., Saueressig F., “Special geometry of euclidean supersymmetry. II. Hypermultiplets and the $c$-map”, J. High Energy Phys., 2005:06 (2005), 025, 37 pp., ages ; hep-th/0503094 | DOI | MR

[12] Dunajski M., West S., “Anti-self-dual conformal structures in neutral signature”, Recent Developments in Pseudo-Riemannian Geometry, ESI Lect. Math. Phys., eds. D. V. Alekseevsky and H. Baum, Eur. Math. Soc., Zürich, 2008, 113–148 ; math.DG/0610280 | MR | Zbl

[13] Floyd R., The dynamics of Kerr fields, PhD Thesis, London University, 1973

[14] Frolov V. P., Kubiznak D., “Higher-dimensional black holes: hidden symmetries and separation of variables”, Classical Quantum Gravity, 25 (2008), 154005, 22 pp., ages ; arXiv:0802.0322 | DOI | MR | Zbl

[15] Gibbons G. W., Rietdijk R. H., van Holten J. W., “SUSY in the sky”, Nuclear Phys. B, 404 (1993), 42–64 ; hep-th/9303112 | DOI | MR | Zbl

[16] Gray A., “Einstein-like manifolds which are not Einstein”, Geom. Dedicata, 7 (1978), 259–280 | DOI | MR | Zbl

[17] Hull C. M., “Actions for (2,1) sigma models and strings”, Nuclear Phys. B, 509 (1998), 252–272 ; hep-th/9702067 | DOI | MR | Zbl

[18] Hull C. M., “Duality and the signature of space-time”, J. High Energy Phys., 1998:11 (1998), 017, 36 pp., ages ; hep-th/9807127 | DOI | MR | Zbl

[19] Ianuş S., Mazzocco R., Vîlcu G. E., “Real lightlike hypersurfaces of paraquaternionic Kähler manifolds”, Mediterr. J. Math., 3 (2006), 581–592 | DOI | MR | Zbl

[20] Ianuş S., Vîlcu G. E., “Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles”, Int. J. Geom. Methods Mod. Phys., 5 (2008), 893–903 ; arXiv:0707.3360 | DOI | MR | Zbl

[21] Ianuş S., Vîlcu G. E., “Hypersurfaces of paraquaternionic space forms”, J. Gen. Lie Theory Appl., 2 (2008), 175–179 | MR | Zbl

[22] Ianuş S., Vîlcu G. E., “Paraquaternionic manifolds and mixed 3-structures”, Proceedings of the VIII International Colloquium on Differential Geometry (July 7–21, 2008, Santiago de Compostela), eds. J. A. López and E. García-Río, Analysis and Geometry in Foliated Manifolds, World Scientific, Singapore, 2009, to appear | MR | Zbl

[23] Jost J., Riemannian geometry and geometric analysis, 3rd ed., Springer-Verlag, Berlin, 2002 | MR

[24] Kamada H., “Neutral hyper-Kähler structures on primary Kodaira surfaces”, Tsukuba J. Math., 23 (1999), 321–332 | MR | Zbl

[25] Kashiwada T., “On conformal Killing tensor”, Natur. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl

[26] Leiva C., Plyushchay M., “Nonlinear superconformal symmetry of a fermion in the field of a Dirac monopole”, Phys. Lett. B, 582 (2004), 135–143 ; hep-th/0311150 | DOI | MR

[27] Matsumoto K., “On Lorentzian paracontact manifolds”, Bull. Yamagata Univ. Natur. Sci., 12 (1989), 151–156 | MR | Zbl

[28] Molino P., Riemannian foliations, Progress in Mathematics, 73, Birkhäuser Boston, Inc., Boston, MA, 1988 | MR | Zbl

[29] Moroianu A., Semmelmann U., “Twistor forms on Kähler manifolds”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2 (2003), 823–845 ; math.DG/0204322 | MR | Zbl

[30] O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, 103, Academic Press, New York, 1983 | MR

[31] Ooguri H., Vafa C., “Geometry of $N=2$ strings”, Nuclear Phys. B, 361 (1991), 469–518 | DOI | MR

[32] Penrose R., “Naked singularities”, Ann. New York Acad. Sci., 224 (1973), 125–134 | DOI | Zbl

[33] Plyushchay M. S., “On the nature of fermion-monopole supersymmetry”, Phys. Lett. B, 485 (2000), 187–192 ; hep-th/0005122 | DOI | MR | Zbl

[34] Semmelmann U., “Conformal Killing forms on Riemannian manifolds”, Math. Z., 245 (2003), 503–527 ; math.DG/0206117 | DOI | MR | Zbl

[35] Tanimoto M., “The role of Killing–Yano tensors in supersymmetric mechanics on a curved manifold”, Nuclear Phys. B, 442 (1995), 549–560 ; gr-qc/9501006 | DOI | MR | Zbl

[36] Vaman D., Visinescu M., “Supersymmetries and constants of motion in Taub-NUT spinning space”, Fortschr. Phys., 47 (1999), 493–514 ; hep-th/9805116 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[37] Yano K., “Some remarks on tensor fields and curvature”, Ann. of Math. (2), 55 (1952), 328–347 | DOI | MR | Zbl