Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a real symmetric domain $G_{\mathbb R}/K_{\mathbb R}$, with complexification $G_{\mathbb C}/K_{\mathbb C}$, we introduce the concept of “star-restriction” (a real analogue of the “star-products” for quantization of Kähler manifolds) and give a geometric construction of the $G_{\mathbb R}$-invariant differential operators yielding its asymptotic expansion.
Keywords: bounded symmetric domain; Toeplitz operator; star product; covariant quantization.
@article{SIGMA_2009_5_a20,
     author = {Miroslav Englis and Harald Upmeier},
     title = {Toeplitz {Quantization} and {Asymptotic} {Expansions:} {Geometric} {Construction}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a20/}
}
TY  - JOUR
AU  - Miroslav Englis
AU  - Harald Upmeier
TI  - Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a20/
LA  - en
ID  - SIGMA_2009_5_a20
ER  - 
%0 Journal Article
%A Miroslav Englis
%A Harald Upmeier
%T Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a20/
%G en
%F SIGMA_2009_5_a20
Miroslav Englis; Harald Upmeier. Toeplitz Quantization and Asymptotic Expansions: Geometric Construction. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a20/

[1] Akhiezer D. N., Gindikin S. G., “On Stein extensions of real symmetric spaces”, Math. Ann., 286 (1990), 1–12 | DOI | MR | Zbl

[2] Arazy J., Ørsted B., “Asymptotic expansions of Berezin transforms”, Indiana Univ. Math. J., 49 (2000), 7–30 | DOI | MR | Zbl

[3] Arazy J., Upmeier H., “Covariant symbolic calculi on real symmetric domains”, Singular Integral Operators, Factorization and Applications, Oper. Theory Adv. Appl., 142, Birkhäuser, Basel, 2003, 1–27 | MR | Zbl

[4] Arazy J., Upmeier H., “Weyl calculus for complex and real symmetric domains”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 13 (2002), 165–181 | MR | Zbl

[5] Arazy J., Upmeier H., “A one-parameter calculus for symmetric domains”, Math. Nachr., 280 (2007), 939–961 | DOI | MR | Zbl

[6] Arazy J., Upmeier H., “Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains”, Function Spaces, Interpolation Theory, and Related Topics (Lund, 2000), eds. A. Kufner, M. Cwikel, M. Engliš, L.-E. Persson and G. Sparr, Walter de Gruyter, Berlin, 2002, 151–211 | MR

[7] Berezin F. A., “General concept of quantization”, Comm. Math. Phys., 40 (1975), 153–174 | DOI | MR

[8] Berezin F. A., “Quantization”, Math. USSR Izvestiya, 8 (1974), 1109–1165 | DOI | MR | Zbl

[9] Berezin F.A., “Quantization in complex symmetric spaces”, Math. USSR Izvestiya, 9 (1975), 341–379 | DOI | MR

[10] Bieliavsky P., “Strict quantization of solvable symmetric spaces”, J. Symplectic Geom., 1 (2002), 269–320 ; math.QA/0010004 | MR | Zbl

[11] Bieliavsky P., Cahen M., Gutt S., “Symmetric symplectic manifolds and deformation quantization”, Modern Group Theoretical Methods in Physics (Paris, 1995), Math. Phys. Stud., 18, Kluwer Acad. Publ., Dordrecht, 1995, 63–73 | MR | Zbl

[12] Bieliavsky P., Pevzner M., “Symmetric spaces and star representations. II. Causal symmetric spaces”, J. Geom. Phys., 41 (2002), 224–234 ; math.QA/0105060 | DOI | MR | Zbl

[13] Bieliavsky P., Detournay S., Spindel P., The deformation quantizations of the hyperbolic plane, arXiv:0806.4741 | MR

[14] Borthwick D., Lesniewski A., Upmeier H., “Non-perturbative deformation quantization on Cartan domains”, J. Funct. Anal., 113 (1993), 153–176 | DOI | MR | Zbl

[15] Bordemann M., Meinrenken E., Schlichenmaier M., “Toeplitz quantization of Kähler manifolds and $gl(n)$, $n\to\infty$ limits”, Comm. Math. Phys., 165 (1994), 281–296 ; hep-th/9309134 | DOI | MR | Zbl

[16] Burns D., Halverscheid S., Hind R., “The geometry of Grauert tubes and complexification of symmetric spaces”, Duke Math. J., 118 (2003), 465–491 ; math.CV/0109186 | DOI | MR | Zbl

[17] van Dijk G., Pevzner M., “Berezin kernels and tube domains”, J. Funct. Anal., 181 (2001), 189–208 | DOI | MR | Zbl

[18] Engliš M., “Berezin–Toeplitz quantization on the Schwartz space of bounded symmetric domains”, J. Lie Theory, 15 (2005), 27–50 | MR | Zbl

[19] Engliš M., “Weighted Bergman kernels and quantization”, Comm. Math. Phys., 227 (2002), 211–241 | DOI | MR | Zbl

[20] Engliš M., “Berezin–Toeplitz quantization and invariant symbolic calculi”, Lett. Math. Phys., 65 (2003), 59–74 | DOI | MR | Zbl

[21] Engliš M., Berezin transform on the harmonic Fock space, in preparation

[22] Engliš M., Upmeier H., Toeplitz quantization and asymptotic expansions for real bounded symmetric domains, Preprint, 2008; http://www.math.cas.cz/~englis/70.pdf

[23] Erdélyi A. et al., Higher transcendental functions, Vol. I, McGraw–Hill, New York, 1953

[24] Faraut J., Korányi A., Analysis on symmetric cones, The Clarendon Press, Oxford University Press, New York, 1994 | MR | Zbl

[25] Folland G. B., Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989 | MR | Zbl

[26] Helgason S., Differential geometry and symmetric spaces, Pure and Applied Mathematics, 12, Academic Press, New York – London, 1962 | MR | Zbl

[27] Hua L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963 | MR | Zbl

[28] Karabegov A. V., Schlichenmaier M., “Identification of Berezin–Toeplitz deformation quantization”, J. Reine Angew. Math., 540 (2001), 49–76 ; math.QA/0006063 | MR | Zbl

[29] Lassalle M., “Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact”, Ann. Sci. École Norm. Sup. (4), 11 (1978), 167–210 | MR | Zbl

[30] Loos O., Bounded symmetric domains and Jordan pairs, University of California, Irvine, 1977

[31] Neretin Yu. A., “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189 (2002), 336–408 ; math.RT/9911020 | DOI | MR | Zbl

[32] Reshetikhin N., Takhtajan L., “Deformation quantization of Kähler manifolds”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 257–276 ; math.QA/9907171 | MR | Zbl

[33] Schlichenmaier M., “Deformation quantization of compact Kähler manifolds by Berezin–Toeplitz quantization”, Conference Moshé Flato, Vol. II (Dijon, 1999), Math. Phys. Stud., 22, Kluwer Acad. Publ., Dordrecht, 2000, 289–306 ; math.QA/9910137 | MR | Zbl

[34] Upmeier H., Toeplitz operators and index theory in several complex variables, Operator Theory: Advances and Applications, 81, Birkhäuser Verlag, Basel, 1996 | MR | Zbl

[35] Weinstein A., “Traces and triangles in symmetric symplectic spaces”, Symplectic Geometry and Quantization (Sanda and Yokohama, 1993), Contemp. Math., 179, 1994, 261–270 | MR | Zbl

[36] Zhang G., “Berezin transform on real bounded symmetric domains”, Trans. Amer. Math. Soc., 353 (2001), 3769–3787 | DOI | MR | Zbl

[37] Zhang G., “Branching coefficients of holomorphic representations and Segal–Bargmann transform”, J. Funct. Anal., 195 (2002), 306–349 ; math.RT/0110212 | DOI | MR | Zbl