Quiver Varieties and Branching
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac–Moody group $G_\mathrm{aff}$ [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of $G_{\mathrm{cpt}}$-instantons on $\mathbb R^4/\mathbb Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{\mathrm{aff}}^\vee$ at level $r$. When $G=\operatorname{SL}(l)$, the Uhlenbeck compactification is the quiver variety of type $\mathfrak{sl}(r)_{\mathrm{aff}}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G=\operatorname{SL}(l)$.
Keywords: quiver variety; geometric Satake correspondence; affine Lie algebra; intersection cohomology.
@article{SIGMA_2009_5_a2,
     author = {Hiraku Nakajima},
     title = {Quiver {Varieties} and {Branching}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a2/}
}
TY  - JOUR
AU  - Hiraku Nakajima
TI  - Quiver Varieties and Branching
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a2/
LA  - en
ID  - SIGMA_2009_5_a2
ER  - 
%0 Journal Article
%A Hiraku Nakajima
%T Quiver Varieties and Branching
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a2/
%G en
%F SIGMA_2009_5_a2
Hiraku Nakajima. Quiver Varieties and Branching. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a2/

[1] Bando S., “Einstein–Hermitian metrics on noncompact Kähler manifolds”, Einstein Metrics and Yang–Mills connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993, 27–33 | MR | Zbl

[2] Baranovsky V., “Moduli of sheaves on surfaces and action of the oscillator algebra”, J. Differential Geom., 55 (2000), 193–227 ; math.AG/9811092 | MR | Zbl

[3] Borho W., MacPherson R., “Partial resolutions of nilpotent varieties”, Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), Astérisque, 101, Soc. Math. France, Paris, 1983, 23–74 | MR

[4] Braverman A., Finkelberg M., Pursuing the double affine Grassmannian I: transversal slices via instantons on $A_k$-singularities, arXiv:0711.2083

[5] Braverman A., Finkelberg M., Private communication, 2008

[6] Braverman A., Kazhdan D., The spherical Hecke algebra for affine Kac–Moody groups I, arXiv:0809.1461

[7] Chriss N., Ginzburg V., Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997 | MR | Zbl

[8] Crawley-Boevey W., “Geometry of the moment map for representations of quivers”, Compositio Math., 126 (2001), 257–293 | DOI | MR | Zbl

[9] Frenkel I. B., “Representations of affine Lie algebras, Hecke modular forms and Korteweg–de Vries type equations”, Lie Algebras and Related Topics (New Brunswick, N.J., 1981), Lecture Notes in Math., 933, Springer, Berlin – New York, 1982, 71–110 | MR

[10] Grojnowski I., “Instantons and affine algebras. I. The Hilbert scheme and vertex operators”, Math. Res. Lett., 3 (1996), 275–291 ; alg-geom/9506020 | MR | Zbl

[11] Hasegawa K., “Spin module versions of Weyl's reciprocity theorem for classical Kac–Moody Lie algebras – an application to branching rule duality”, Publ. Res. Inst. Math. Sci., 25 (1989), 741–828 | DOI | MR | Zbl

[12] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR

[13] Kashiwara M., Saito Y., “Geometric construction of crystal bases”, Duke Math. J., 89 (1997), 9–36 ; q-alg/9606009 | DOI | MR | Zbl

[14] King A. D., “Moduli of representations of finite-dimensional algebras”, Quart. J. Math. Oxford Ser. (2), 45 (1994), 515–530 | DOI | MR | Zbl

[15] Kronheimer P. B., “The construction of ALE spaces as hyper-Kähler quotients”, J. Differential Geom., 29 (1989), 665–683 | MR | Zbl

[16] Kronheimer P. B., Nakajima H., “Yang–Mills instantons on ALE gravitational instantons”, Math. Ann., 288 (1990), 263–307 | DOI | MR | Zbl

[17] Lusztig G., “Green polynomials and singularities of unipotent classes”, Adv. in Math., 42 (1981), 169–178 | DOI | MR | Zbl

[18] Lusztig G., “Canonical bases arising from quantized enveloping algebras. II”, Common Trends in Mathematics and Quantum Field Theories (Kyoto, 1990), Progr. Theoret. Phys. Suppl., 102, 1990, 175–201 | MR | Zbl

[19] Malkin A., “Tensor product varieties and crystals: the $ADE$ case”, Duke Math. J., 116 (2003), 477–524 ; math.AG/0103025 | DOI | MR | Zbl

[20] Mirković I., Vilonen K., “Perverse sheaves on affine Grassmannians and Langlands duality”, Math. Res. Lett., 7 (2000), 13–24 ; math.AG/9911050 | MR | Zbl

[21] Nagao K., Quiver varieties and Frenkel–Kac construction, math.RT/0703107 | MR

[22] Nakajima H., “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76 (1994), 365–416 | DOI | MR | Zbl

[23] Nakajima H., “Varieties associated with quivers”, Representation Theory of Algebras and Related Topics (Mexico City, 1994), CMS Conf. Proc., 19, Amer. Math. Soc., Providence, RI, 1996, 139–157 | MR | Zbl

[24] Nakajima H., “Quiver varieties and Kac–Moody algebras”, Duke Math. J., 91 (1998), 515–560 | DOI | MR | Zbl

[25] Nakajima H., Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18, American Mathematical Society, Providence, RI, 1999 | MR | Zbl

[26] Nakajima H., “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., 14 (2001), 145–238 ; math.QA/9912158 | DOI | MR | Zbl

[27] Nakajima H., “Quiver varieties and tensor products”, Invent. Math., 146 (2001), 399–449 ; math.QA/0103008 | DOI | MR | Zbl

[28] Nakajima H., “Geometric construction of representations of affine algebras”, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 423–438 ; math.QA/0212401 | MR | Zbl

[29] Nakajima H., “Reflection functors for quiver varieties and Weyl group actions”, Math. Ann., 327 (2003), 671–721 | DOI | MR | Zbl

[30] Nakajima H., “Sheaves on ALE spaces and quiver varieties”, Mosc. Math. J., 7 (2007), 699–722 | MR | Zbl

[31] Nakanishi T., Tsuchiya A., “Level-rank duality of WZW models in conformal field theory”, Comm. Math. Phys., 144 (1992), 351–372 | DOI | MR | Zbl

[32] Rudakov A., “Stability for an abelian category”, J. Algebra, 197 (1997), 231–245 | DOI | MR | Zbl

[33] Saito Y., “Crystal bases and quiver varieties”, Math. Ann., 324 (2002), 675–688 ; math.QA/0111232 | DOI | MR | Zbl