@article{SIGMA_2009_5_a19,
author = {Amira Ghorbel and Hatem Hamrouni},
title = {Discrete {Cocompact} {Subgroups} of the {Five-Dimensional} {Connected} and {Simply} {Connected} {Nilpotent} {Lie} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a19/}
}
TY - JOUR AU - Amira Ghorbel AU - Hatem Hamrouni TI - Discrete Cocompact Subgroups of the Five-Dimensional Connected and Simply Connected Nilpotent Lie Groups JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a19/ LA - en ID - SIGMA_2009_5_a19 ER -
%0 Journal Article %A Amira Ghorbel %A Hatem Hamrouni %T Discrete Cocompact Subgroups of the Five-Dimensional Connected and Simply Connected Nilpotent Lie Groups %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a19/ %G en %F SIGMA_2009_5_a19
Amira Ghorbel; Hatem Hamrouni. Discrete Cocompact Subgroups of the Five-Dimensional Connected and Simply Connected Nilpotent Lie Groups. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a19/
[1] Auslander L., Green L., Hahn F., Flows on homogeneous spaces, Annals of Mathematics Studies, 53, Princeton University Press, Princeton, N.J., 1963 | MR
[2] Corwin L., Greenleaf F. P., Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples, Cambridge Studies in Advanced Mathematics, 18, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[3] Dixmier J., “Sur les représentations unitaires des groupes de Lie nilpotents. III”, Canad. J. Math., 10 (1958), 321–348 | MR | Zbl
[4] Gorbatsevich V., About existence and non-existence of lattices in some solvable Lie groups, Preprint ESI, no. 1253, 2002
[5] Gordon C. S., Wilson E. N., “The spectrum of the Laplacian on Riemannian Heisenberg manifolds”, Michigan Math. J., 33 (1986), 253–271 | DOI | MR | Zbl
[6] Hamrouni H., “Discrete cocompact subgroups of the generic filiform nilpotent Lie groups”, J. Lie Theory, 18 (2008), 1–16 | MR | Zbl
[7] Hungerford T. W., Algebra, Graduate Texts in Mathematics, 73, Springer-Verlag, New York – Berlin, 1974 | MR
[8] Lauret J., Will C. E., “On Anosov automorphisms of nilmanifolds”, J. Pure Appl. Algebra, 212 (2008), 1747–1755 | DOI | MR | Zbl
[9] Malcev A. I., On a class of homogeneous spaces, Amer. Math. Soc. Translation, 39, 1951 | MR
[10] Matsushima Y., “On the discrete subgroups and homogeneous spaces of nilpotent Lie groups”, Nagoya Math. J., 2 (1951), 95–110 | MR | Zbl
[11] Milnes P., Walters S., “Discrete cocompact subgroups of the four-dimensional nilpotent connected Lie group and their group $C^*$-algebras”, J. Math. Anal. Appl., 253 (2001), 224–242 | DOI | MR | Zbl
[12] Milnes P., Walters S., “Discrete cocompact subgroups of $G_{5,3}$ and related $C^*$-algebras”, Rocky Mountain J. Math., 35 (2005), 1765–1786 ; math.OA/0105104 | DOI | MR | Zbl
[13] Milnes P., Walters S., “Simple infinite dimensional quotients of $C^*(G)$ for discrete $5$-dimensional nilpotent groups $G$”, Illinois J. Math., 41 (1997), 315–340 | MR | Zbl
[14] Onishchik A. L., Vinberg E. B., Lie groups and Lie algebra. II. Discrete subgroups of Lie groups and cohomologies of Lie groups and Lie algebras, Encyclopaedia of Mathematical Sciences, 21, Springer-Verlag, Berlin, 2000 | MR | Zbl
[15] Pesce H., “Calcul du spectre d'une nilvariété de rang deux et applications”, Trans. Amer. Math. Soc., 339 (1993), 433–461 | DOI | MR | Zbl
[16] Raghunathan M. S., Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 68, Springer-Verlag, New York – Heidelberg, 1972 | MR | Zbl