@article{SIGMA_2009_5_a18,
author = {Chokri Abdelkefi and Jean-Philippe Anker and Feriel Sassi and Mohamed Sifi},
title = {Besov-Type {Spaces} on $\mathbb R^d $ and {Integrability} for the {Dunkl} {Transform}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a18/}
}
TY - JOUR AU - Chokri Abdelkefi AU - Jean-Philippe Anker AU - Feriel Sassi AU - Mohamed Sifi TI - Besov-Type Spaces on $\mathbb R^d $ and Integrability for the Dunkl Transform JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a18/ LA - en ID - SIGMA_2009_5_a18 ER -
%0 Journal Article %A Chokri Abdelkefi %A Jean-Philippe Anker %A Feriel Sassi %A Mohamed Sifi %T Besov-Type Spaces on $\mathbb R^d $ and Integrability for the Dunkl Transform %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a18/ %G en %F SIGMA_2009_5_a18
Chokri Abdelkefi; Jean-Philippe Anker; Feriel Sassi; Mohamed Sifi. Besov-Type Spaces on $\mathbb R^d $ and Integrability for the Dunkl Transform. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a18/
[1] Abdelkefi C., Sifi M., “On the uniform convergence of partial Dunkl integrals in Besov–Dunkl spaces”, Fract. Calc. Appl. Anal., 9 (2006), 43–56 | MR | Zbl
[2] Abdelkefi C., Sifi M., “Further results of integrability for the Dunkl transform”, Commun. Math. Anal., 2 (2007), 29–36 | MR | Zbl
[3] Abdelkefi C., “Dunkl transform on Besov spaces and Herz spaces”, Commun. Math. Anal., 2 (2007), 35–41 | MR | Zbl
[4] Abdelkefi C., Sifi M., “Characterization of Besov spaces for the Dunkl operator on the real line”, JIPAM. J. Inequal. Pure Appl. Math., 8:3 (2007), Article 73, 11 pp., ages | MR
[5] Bergh J., Löfström J., Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin – New York, 1976 | MR | Zbl
[6] Besov O. V., “On a family of function spaces in connection with embeddings and extentions”, Trudy. Mat. Inst. Steklov., 60, 1961, 42–81 (in Russian) | MR
[7] Betancor J. J., Rodríguez-Mesa L., “Lipschitz–Hankel spaces and partial Hankel integrals”, Integral Transform. Spec. Funct., 7 (1998), 1–12 | DOI | MR | Zbl
[8] de Jeu M. F. E., “The Dunkl transform”, Invent. Math., 113 (1993), 147–162 | DOI | MR | Zbl
[9] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[10] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | MR | Zbl
[11] Dunkl C. F., “Hankel transforms associated to finite reflection groups”, Proc. of Special Session on Hypergeometric Functions on Domains of Positivity, Jack Polynomials and Applications (Tampa, 1991), Contemp. Math., 138, 1992, 123–138 | MR | Zbl
[12] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 81, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[13] Giang D. V., Mórciz F., “On the uniform and the absolute convergence of Dirichlet integrals of functions in Besov-spaces”, Acta Sci. Math. (Szeged), 59 (1994), 257–265 | MR
[14] Kamoun L., “Besov-type spaces for the Dunkl operator on the real line”, J. Comput. Appl. Math., 199 (2007), 56–67 | DOI | MR | Zbl
[15] Pelczynski A., Wojciechowski M., “Molecular decompositions and embbeding theorems for vector-valued Sobolev spaces with gradient norm”, Studia Math., 107 (1993), 61–100 | MR | Zbl
[16] Rösler M., “Generalized Hermite polynomials and the heat equation for Dunkl operators”, Comm. Math. Phys., 192 (1998), 519–542 ; q-alg/9703006 | DOI | MR | Zbl
[17] Rösler M., “Positivity of Dunkl's intertwining operator”, Duke Math. J., 98 (1999), 445–463 ; q-alg/9710029 | DOI | MR | Zbl
[18] Rösler M., Voit M., “Markov processes with Dunkl operators”, Adv. in Appl. Math., 21 (1998), 575–643 | DOI | MR | Zbl
[19] Thangavelyu S., Xu Y., “Convolution operator and maximal function for Dunkl transform”, J. Anal. Math., 97 (2005), 25–55 | DOI | MR
[20] Titchmarsh E. C., Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937
[21] Triebel H., Theory of function spaces, Monographs in Mathematics, 78, Birkhäuser Verlag, Basel, 1983 | MR | Zbl
[22] Trimèche K., “The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual”, Integral Transforms Spec. Funct., 12 (2001), 349–374 | DOI | MR | Zbl
[23] Trimèche K., “Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators”, Integral Transforms Spec. Funct., 13 (2002), 17–38 | DOI | MR | Zbl