@article{SIGMA_2009_5_a17,
author = {Gusein Sh. Guseinov},
title = {Inverse {Spectral} {Problems} for {Tridiagonal~}$N$ by $N${~Complex} {Hamiltonians}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/}
}
Gusein Sh. Guseinov. Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/
[1] Boley D., Golub G. H., “A survey of matrix inverse eigenvalue problems”, Inverse Problems, 3 (1987), 595–622 | DOI | MR | Zbl
[2] Ikramov Kh. D., Chugunov V. N., “Inverse matrix eigenvalue problems”, J. Math. Sciences, 98 (2000), 51–136 | DOI | MR | Zbl
[3] Chu M. T., Golub G. H., Inverse eigenvalue problems: theory, algorithms, and applications, Oxford University Press, New York, 2005 | MR
[4] Marchenko V. A., “Expansion in eigenfunctions of non-selfadjoint singular second order differential operators”, Mat. Sb., 52:2 (1960), 739–788 (in Russian) | MR
[5] Rofe-Beketov F. S., “Expansion in eigenfunctions of infinite systems of differential equations in the non-selfadjoint and selfadjoint cases”, Mat. Sb., 51 (1960), 293–342 (in Russian) | MR | Zbl
[6] Math. Notes, 23 (1978), 130–136 | MR
[7] Guseinov G. Sh., “The inverse problem from the generalized spectral matrix for a second order non-selfadjoint difference equation on the axis”, Izv. Akad. Nauk Azerb. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 1978, no. 5, 16–22 (in Russian) | MR | Zbl
[8] Math. Notes, 11 (1972), 266–271 | MR | Zbl | Zbl
[9] Math. Notes, 11 (1972), 402–406 | MR
[10] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[11] Znojil M., “Matching method and exact solvability of discrete $PT$-symmetric square wells”, J. Phys. A: Math. Gen., 39 (2006), 10247–10261 ; quant-ph/0605209 | DOI | MR | Zbl
[12] Znojil M., “Maximal couplings in $PT$-symmetric chain models with the real spectrum of energies”, J. Phys. A: Math. Theor., 40 (2007), 4863–4875 ; math-ph/0703070 | DOI | MR | Zbl
[13] Znojil M., “Tridiagonal $PT$-symmetric $N$ by $N$ Hamiltonians and fine-tuning of their observability domains in the strongly non-Hermitian regime”, J. Phys. A: Math. Theor., 40 (2007), 13131–13148 ; arXiv:0709.1569 | DOI | MR | Zbl
[14] Math. USSR Sbornik, 66 (1990), 107–125 | DOI | MR | Zbl | Zbl
[15] Guseinov G. Sh., “Completeness of the eigenvectors of a dissipative second order difference operator”, J. Difference Equ. Appl., 8 (2002), 321–331 | DOI | MR | Zbl
[16] van Moerbeke P., Mumford D., “The spectrum of difference operators and algebraic curves”, Acta Math., 143 (1979), 93–154 | DOI | MR | Zbl
[17] Sansuc J. J., Tkachenko V., “Spectral parametrization of non-selfadjoint Hill's operators”, J. Differential Equations, 125 (1996), 366–384 | DOI | MR | Zbl
[18] Egorova I., Golinskii L., “Discrete spectrum for complex perturbations of periodic Jacobi matrices”, J. Difference Equ. Appl., 11 (2005), 1185–1203 ; math.SP/0503627 | DOI | MR | Zbl
[19] Atkinson F. V., Discrete and continuous boundary problems, Academic Press, New York, 1964 | MR | Zbl
[20] Akhiezer N. I., The classical moment problem and some related questions in analysis, Hafner, New York, 1965 | MR
[21] Berezanskii Yu. M., Expansion in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, American Mathematical Society, Providence, R.I., 1968 | MR
[22] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Translations of Mathematical Monographs, 92, American Mathematical Society, Providence, R.I., 1991 | MR | Zbl
[23] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, American Mathematical Society, Providence, R.I., 2000 | MR | Zbl