Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the concept of generalized spectral function is introduced for finite-order tridiagonal symmetric matrices (Jacobi matrices) with complex entries. The structure of the generalized spectral function is described in terms of spectral data consisting of the eigenvalues and normalizing numbers of the matrix. The inverse problems from generalized spectral function as well as from spectral data are investigated. In this way, a procedure for construction of complex tridiagonal matrices having real eigenvalues is obtained.
Keywords: Jacobi matrix; difference equation; generalized spectral function; spectral data.
@article{SIGMA_2009_5_a17,
     author = {Gusein Sh. Guseinov},
     title = {Inverse {Spectral} {Problems} for {Tridiagonal~}$N$ by $N${~Complex} {Hamiltonians}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/}
}
TY  - JOUR
AU  - Gusein Sh. Guseinov
TI  - Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/
LA  - en
ID  - SIGMA_2009_5_a17
ER  - 
%0 Journal Article
%A Gusein Sh. Guseinov
%T Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/
%G en
%F SIGMA_2009_5_a17
Gusein Sh. Guseinov. Inverse Spectral Problems for Tridiagonal $N$ by $N$ Complex Hamiltonians. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a17/

[1] Boley D., Golub G. H., “A survey of matrix inverse eigenvalue problems”, Inverse Problems, 3 (1987), 595–622 | DOI | MR | Zbl

[2] Ikramov Kh. D., Chugunov V. N., “Inverse matrix eigenvalue problems”, J. Math. Sciences, 98 (2000), 51–136 | DOI | MR | Zbl

[3] Chu M. T., Golub G. H., Inverse eigenvalue problems: theory, algorithms, and applications, Oxford University Press, New York, 2005 | MR

[4] Marchenko V. A., “Expansion in eigenfunctions of non-selfadjoint singular second order differential operators”, Mat. Sb., 52:2 (1960), 739–788 (in Russian) | MR

[5] Rofe-Beketov F. S., “Expansion in eigenfunctions of infinite systems of differential equations in the non-selfadjoint and selfadjoint cases”, Mat. Sb., 51 (1960), 293–342 (in Russian) | MR | Zbl

[6] Math. Notes, 23 (1978), 130–136 | MR

[7] Guseinov G. Sh., “The inverse problem from the generalized spectral matrix for a second order non-selfadjoint difference equation on the axis”, Izv. Akad. Nauk Azerb. SSR Ser. Fiz.-Tekhn. Mat. Nauk, 1978, no. 5, 16–22 (in Russian) | MR | Zbl

[8] Math. Notes, 11 (1972), 266–271 | MR | Zbl | Zbl

[9] Math. Notes, 11 (1972), 402–406 | MR

[10] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR

[11] Znojil M., “Matching method and exact solvability of discrete $PT$-symmetric square wells”, J. Phys. A: Math. Gen., 39 (2006), 10247–10261 ; quant-ph/0605209 | DOI | MR | Zbl

[12] Znojil M., “Maximal couplings in $PT$-symmetric chain models with the real spectrum of energies”, J. Phys. A: Math. Theor., 40 (2007), 4863–4875 ; math-ph/0703070 | DOI | MR | Zbl

[13] Znojil M., “Tridiagonal $PT$-symmetric $N$ by $N$ Hamiltonians and fine-tuning of their observability domains in the strongly non-Hermitian regime”, J. Phys. A: Math. Theor., 40 (2007), 13131–13148 ; arXiv:0709.1569 | DOI | MR | Zbl

[14] Math. USSR Sbornik, 66 (1990), 107–125 | DOI | MR | Zbl | Zbl

[15] Guseinov G. Sh., “Completeness of the eigenvectors of a dissipative second order difference operator”, J. Difference Equ. Appl., 8 (2002), 321–331 | DOI | MR | Zbl

[16] van Moerbeke P., Mumford D., “The spectrum of difference operators and algebraic curves”, Acta Math., 143 (1979), 93–154 | DOI | MR | Zbl

[17] Sansuc J. J., Tkachenko V., “Spectral parametrization of non-selfadjoint Hill's operators”, J. Differential Equations, 125 (1996), 366–384 | DOI | MR | Zbl

[18] Egorova I., Golinskii L., “Discrete spectrum for complex perturbations of periodic Jacobi matrices”, J. Difference Equ. Appl., 11 (2005), 1185–1203 ; math.SP/0503627 | DOI | MR | Zbl

[19] Atkinson F. V., Discrete and continuous boundary problems, Academic Press, New York, 1964 | MR | Zbl

[20] Akhiezer N. I., The classical moment problem and some related questions in analysis, Hafner, New York, 1965 | MR

[21] Berezanskii Yu. M., Expansion in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, American Mathematical Society, Providence, R.I., 1968 | MR

[22] Nikishin E. M., Sorokin V. N., Rational approximations and orthogonality, Translations of Mathematical Monographs, 92, American Mathematical Society, Providence, R.I., 1991 | MR | Zbl

[23] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, American Mathematical Society, Providence, R.I., 2000 | MR | Zbl