Comments on the Dynamics of the Pais–Uhlenbeck Oscillator
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian \begin{gather} \label{1} L=\frac12\left[\ddot q^2-(\Omega_1^2+\Omega_2^2)\dot q^2+\Omega_1^2\Omega_2^2 q\right] \quad(+\text{ nonlinear terms}). \end{gather} When $\Omega_1\neq\Omega_2$, the free PU oscillator has a pure point spectrum that is dense everywhere. When $\Omega_1=\Omega_2$, the spectrum is continuous, $E\in\{-\infty,\infty\}$. The spectrum is not bounded from below, but that is not disastrous as the Hamiltonian is Hermitian and the evolution operator is unitary. Generically, the inclusion of interaction terms breaks unitarity, but in some special cases unitarity is preserved. We discuss also the nonstandard realization of the PU oscillator suggested by Bender and Mannheim, where the spectrum of the free Hamiltonian is positive definite, but wave functions grow exponentially for large real values of canonical coordinates. The free nonstandard PU oscillator is unitary at $\Omega_1\neq\Omega_2$, but unitarity is broken in the equal frequencies limit.
Keywords: higher derivatives; ghosts; unitarity.
@article{SIGMA_2009_5_a16,
     author = {Andrei V. Smilga},
     title = {Comments on the {Dynamics} of the {Pais{\textendash}Uhlenbeck} {Oscillator}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/}
}
TY  - JOUR
AU  - Andrei V. Smilga
TI  - Comments on the Dynamics of the Pais–Uhlenbeck Oscillator
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/
LA  - en
ID  - SIGMA_2009_5_a16
ER  - 
%0 Journal Article
%A Andrei V. Smilga
%T Comments on the Dynamics of the Pais–Uhlenbeck Oscillator
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/
%G en
%F SIGMA_2009_5_a16
Andrei V. Smilga. Comments on the Dynamics of the Pais–Uhlenbeck Oscillator. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/

[1] Smilga A. V., “6D superconformal theory as the theory of everything”, Gribov Memorial Volume, eds. Yu. L. Dokshitzer, P. Levai and J. Nyiri, World Scientific, 2006, 443–459; hep-th/0509022

[2] Smilga A. V., “Benign versus malicious ghosts in higher-derivative theories”, Nuclear Phys. B, 706 (2005), 598–614 ; hep-th/0407231 | DOI | MR | Zbl

[3] Pais A., Uhlenbeck G. E., “On field theories with nonlocalized action”, Phys. Rev., 79 (1950), 145–165 | DOI | MR | Zbl

[4] Robert D., Smilga A. V., “Supersymmetry versus ghosts”, J. Math. Phys., 49 (2008), 042104, 20 pp., ages ; math-ph/0611023 | DOI | MR | Zbl

[5] Smilga A. V., “Ghost-free higher-derivative theory”, Phys. Lett. B, 632 (2006), 433–438 ; hep-th/0503213 | DOI | MR

[6] Bolonek K., Kosinski P., Comments on “Dirac quantization of Pais–Uhlenbeck fourth order oscillator”, quant-ph/0612009

[7] Mannheim P. D., Davidson A., “Dirac quantization of the Pais–Uhlenbeck fourth order oscillator”, Phys. Rev. A, 71 (2005), 042110, 9 pp., ages ; hep-th/0408104 | DOI | MR

[8] Bender C. M., Mannheim P. D., “No ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model”, Phys. Rev. Lett., 100 (2008), 110402, 4 pp., ages ; arXiv:0706.0207 | DOI

[9] Bender C. M., Mannheim P. D., “Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart”, Phys. Rev. D, 78 (2008), 025022, 20 pp., ages ; arXiv:0804.4190 | DOI | MR

[10] Ostrogradsky M., “Mémoires sur les équations différentielles relatives au problème des isopérimètres”, Mem. Acad. St. Petersbourg, VI 4 (1850), 385–517

[11] Heiss W. D., “Exceptional points of non-Hermitian operators”, J. Phys. A: Math. Gen., 37 (2004), 2455–2464 ; quant-ph/0304152 | DOI | MR | Zbl

[12] Anderson A., “Canonical transformations in quantum mechanics”, Ann. Phys., 232 (1994), 292–331 ; hep-th/9305054 | DOI | MR | Zbl

[13] Case K. M., “Singular potentials”, Phys. Rev., 80 (1950), 797–806 ; Meetz K., “Singular potentials in non-relativistic quantum mechanics”, Nuovo Cimento, 34 (1964), 690–708 ; Perelomov A. M., Popov V. S., ““Fall to the center” in quantum mechanics”, Teor. Mat. Fiz., 4:1 (1970), 48–65 | DOI | MR | Zbl | DOI | MR | Zbl | MR

[14] Bronzan J. B., Shapiro J. A., Sugar R. L., “Reggeon field theory in zero transverse dimensions”, Phys. Rev. D, 14 (1976), 618–631 ; Amati D., Le Bellac M., Marchesini G., Ciafaloni M., “Reggeon field theory for $\alpha(0)>1$”, Nuclear Phys. B, 112 (1976), 107–149 ; Gasymov M. G., “Spectral analysis of a class of second-order non-self-adjoint differential operators”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 14–19 ; Caliceti E., Graffi S., Maioli M., “Perturbation theory of odd anharmonic oscillators”, Comm. Math. Phys., 75 (1980), 51–66 | DOI | DOI | MR | Zbl | DOI | MR | Zbl