@article{SIGMA_2009_5_a16,
author = {Andrei V. Smilga},
title = {Comments on the {Dynamics} of the {Pais{\textendash}Uhlenbeck} {Oscillator}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/}
}
Andrei V. Smilga. Comments on the Dynamics of the Pais–Uhlenbeck Oscillator. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a16/
[1] Smilga A. V., “6D superconformal theory as the theory of everything”, Gribov Memorial Volume, eds. Yu. L. Dokshitzer, P. Levai and J. Nyiri, World Scientific, 2006, 443–459; hep-th/0509022
[2] Smilga A. V., “Benign versus malicious ghosts in higher-derivative theories”, Nuclear Phys. B, 706 (2005), 598–614 ; hep-th/0407231 | DOI | MR | Zbl
[3] Pais A., Uhlenbeck G. E., “On field theories with nonlocalized action”, Phys. Rev., 79 (1950), 145–165 | DOI | MR | Zbl
[4] Robert D., Smilga A. V., “Supersymmetry versus ghosts”, J. Math. Phys., 49 (2008), 042104, 20 pp., ages ; math-ph/0611023 | DOI | MR | Zbl
[5] Smilga A. V., “Ghost-free higher-derivative theory”, Phys. Lett. B, 632 (2006), 433–438 ; hep-th/0503213 | DOI | MR
[6] Bolonek K., Kosinski P., Comments on “Dirac quantization of Pais–Uhlenbeck fourth order oscillator”, quant-ph/0612009
[7] Mannheim P. D., Davidson A., “Dirac quantization of the Pais–Uhlenbeck fourth order oscillator”, Phys. Rev. A, 71 (2005), 042110, 9 pp., ages ; hep-th/0408104 | DOI | MR
[8] Bender C. M., Mannheim P. D., “No ghost theorem for the fourth-order derivative Pais–Uhlenbeck oscillator model”, Phys. Rev. Lett., 100 (2008), 110402, 4 pp., ages ; arXiv:0706.0207 | DOI
[9] Bender C. M., Mannheim P. D., “Exactly solvable PT-symmetric Hamiltonian having no Hermitian counterpart”, Phys. Rev. D, 78 (2008), 025022, 20 pp., ages ; arXiv:0804.4190 | DOI | MR
[10] Ostrogradsky M., “Mémoires sur les équations différentielles relatives au problème des isopérimètres”, Mem. Acad. St. Petersbourg, VI 4 (1850), 385–517
[11] Heiss W. D., “Exceptional points of non-Hermitian operators”, J. Phys. A: Math. Gen., 37 (2004), 2455–2464 ; quant-ph/0304152 | DOI | MR | Zbl
[12] Anderson A., “Canonical transformations in quantum mechanics”, Ann. Phys., 232 (1994), 292–331 ; hep-th/9305054 | DOI | MR | Zbl
[13] Case K. M., “Singular potentials”, Phys. Rev., 80 (1950), 797–806 ; Meetz K., “Singular potentials in non-relativistic quantum mechanics”, Nuovo Cimento, 34 (1964), 690–708 ; Perelomov A. M., Popov V. S., ““Fall to the center” in quantum mechanics”, Teor. Mat. Fiz., 4:1 (1970), 48–65 | DOI | MR | Zbl | DOI | MR | Zbl | MR
[14] Bronzan J. B., Shapiro J. A., Sugar R. L., “Reggeon field theory in zero transverse dimensions”, Phys. Rev. D, 14 (1976), 618–631 ; Amati D., Le Bellac M., Marchesini G., Ciafaloni M., “Reggeon field theory for $\alpha(0)>1$”, Nuclear Phys. B, 112 (1976), 107–149 ; Gasymov M. G., “Spectral analysis of a class of second-order non-self-adjoint differential operators”, Funktsional. Anal. i Prilozhen., 14:1 (1980), 14–19 ; Caliceti E., Graffi S., Maioli M., “Perturbation theory of odd anharmonic oscillators”, Comm. Math. Phys., 75 (1980), 51–66 | DOI | DOI | MR | Zbl | DOI | MR | Zbl