The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the first part of the paper we describe the complex geometry of the universal Teichmüller space $\mathcal T$, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient $\mathcal S$ of the diffeomorphism group of the circle modulo Möbius transformations may be treated as a smooth part of $\mathcal T$. In the second part we consider the quantization of universal Teichmüller space $\mathcal T$. We explain first how to quantize the smooth part $\mathcal S$ by embedding it into a Hilbert–Schmidt Siegel disc. This quantization method, however, does not apply to the whole universal Teichmüller space $\mathcal T$, for its quantization we use an approach, due to Connes.
Keywords: universal Teichmüller space; quasisymmetric homeomorphisms; Connes quantization.
@article{SIGMA_2009_5_a14,
     author = {Armen G. Sergeev},
     title = {The {Group} of {Quasisymmetric} {Homeomorphisms} of the {Circle} and {Quantization} of the {Universal} {Teichm\"uller} {Space}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a14/}
}
TY  - JOUR
AU  - Armen G. Sergeev
TI  - The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a14/
LA  - en
ID  - SIGMA_2009_5_a14
ER  - 
%0 Journal Article
%A Armen G. Sergeev
%T The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a14/
%G en
%F SIGMA_2009_5_a14
Armen G. Sergeev. The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a14/

[1] Ahlfors L., Lectures on quaiconformal mappings, Van Nostrand Mathematical Studies, 10, D. Van Nostrand Co., Inc., Toronto – New York – London, 1966 | MR

[2] Berezin F. A., Method of second quantization, Pure and Applied Physics, 24, Academic Press, New York – London, 1966 | MR | Zbl

[3] Bowick M. J., Rajeev S. G., “The holomorphic geometry of closed bosonic string theory and $\mathrm{Diff}\,S^1/S^1$”, Nuclear Phys. B, 293 (1987), 348–384 | DOI | MR

[4] Bungart L., “On analytic fiber bundles. I. Holomorphic fiber bundles with infinite-dimensional fibers”, Topology, 7 (1967), 55–68 | DOI | MR

[5] Connes A., Géométrie non commutative, InterEditions, Paris, 1990 | MR | Zbl

[6] Douady A., Earle C. J., “Conformally natural extension of homeomorphisms of the circle”, Acta Math., 157 (1986), 23–48 | DOI | MR | Zbl

[7] Goodman R., Wallach N. R., “Projective unitary positive-energy representations of $\mathrm{Diff}(S^1)$”, J. Funct. Anal., 63 (1985), 299–321 | DOI | MR | Zbl

[8] Kac V. G., Raina A. K., Highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987 | MR | Zbl

[9] Lehto O., Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics, 109, Springer-Verlag, New York, 1987 | MR | Zbl

[10] Nag S., The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley Sons, Inc., New York, 1988 | MR

[11] Nag S., “A period mapping in universal Teichmüller space”, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 280–287 ; math.CA/9204237 | DOI | MR | Zbl

[12] Nag S., Sullivan D., “Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle”, Osaka J. Math., 32 (1995), 1–34 ; alg-geom/9310005 | MR | Zbl

[13] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986 | MR

[14] Power S., Hankel operators on Hilbert space, Research Notes in Mathematics, 64, Pitman (Advanced Publishing Program), Boston – London, 1982 | MR | Zbl

[15] Scherk J., “An introduction to the theory ofdual models and strings”, Rev. Modern Phys., 47 (1975), 123–164 | DOI | MR

[16] Segal G., “Unitary representations of some infinite-dimensional groups”, Comm. Math. Phys., 80 (1981), 301–342 | DOI | MR | Zbl

[17] Shale D., “Linear symmetries of free boson field”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl

[18] Zygmund A., Trigonometric series, Vol. I, II, 3rd ed., Cambridge University Press, Cambridge, 2002 | MR | Zbl