@article{SIGMA_2009_5_a13,
author = {Pavel Kolesnikov},
title = {Simple {Finite} {Jordan} {Pseudoalgebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a13/}
}
Pavel Kolesnikov. Simple Finite Jordan Pseudoalgebras. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a13/
[1] Bakalov B., D'Andrea A., Kac V. G., “Theory of finite pseudoalgebras”, Adv. Math., 162 (2001), 1–140 ; math.QA/0007121 | DOI | MR | Zbl
[2] Beilinson A. A., Drinfeld V. G., Chiral algebras, American Mathematical Society Colloquium Publications, 51, American Mathematical Society, Providence, RI, 2004 | MR | Zbl
[3] Belavin A. A., Polyakov A. M., Zamolodchikov A. B., “Infinite conformal symmetry in two-dimensional quantum field theory”, Nuclear Phys. B, 241 (1984), 333–380 | DOI | MR | Zbl
[4] Borcherds R. E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. U.S.A., 83 (1986), 3068–3071 | DOI | MR | Zbl
[5] D'Andrea A., Kac V. G., “Structure theory of finite conformal algebras”, Selecta Math. (N.S.), 4 (1998), 377–418 | DOI | MR
[6] Fattori D., Kac V. G., “Classification of finite simple Lie conformal superalgebras”, J. Algebra, 258 (2002), 23–59 ; math-ph/0106002 | DOI | MR | Zbl
[7] Kac V. G., Vertex algebras for beginners, 2nd ed., University Lecture Series, 10, American Mathematical Society, Providence, RI, 1998 | MR
[8] Kac V. G., “Formal distribution algebras and conformal algebras”, Proceedinds of XII-th International Congress in Mathematical Physics (ICMP'97) (Brisbane), Int. Press, Cambridge, MA, 1999, 80–97 ; q-alg/9709027 | MR
[9] Kac V. G., Retakh A., “Simple Jordan conformal superalgebras”, J. Algebra Appl., 7 (2008), 517–533 ; arXiv:0801.0755 | DOI | MR | Zbl
[10] Kantor I. L., “Classification of irreducible transitively differential groups”, Soviet Math. Dokl., 5 (1965), 1404–1407 | MR
[11] Koecher M., “Embedding of Jordan algebras into Lie algebras. I”, Amer. J. Math., 89 (1967), 787–816 | DOI | MR | Zbl
[12] Koecher M., “Embedding of Jordan algebras into Lie algebras. II”, Amer. J. Math., 90 (1968), 476–510 | DOI | MR | Zbl
[13] Kolesnikov P. S., “Identities of conformal algebras and pseudoalgebras”, Comm. Algebra, 34:6 (2006), 1965–1979 ; math.RA/0412397 | DOI | MR | Zbl
[14] Lambek J., “Deductive systems and categories II. Standard constructions and closed categories”, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, 76–122 | MR
[15] Roitman M., “On free conformal and vertex algebras”, J. Algebra, 217 (1999), 496–527 ; math.QA/9809050 | DOI | MR | Zbl
[16] Sweedler M. E., “Cocommutative Hopf algebras with antipode”, Bull. Amer. Math. Soc., 73 (1967), 126–128 | DOI | MR | Zbl
[17] Sweedler M. E., Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl
[18] Tits J., “Une classe d'algebres de Lie en relation avec algebres de Jordan”, Indag. Math., 24 (1962), 530–535 | MR
[19] Zelmanov E. I., “On the structure of conformal algebras”, Proceedings of Intern. Conf. on Combinatorial and Computational Algebra (May 24–29, 1999, Hong Kong), Contemp. Math., 264, 2000, 139–153 | MR | Zbl
[20] Zhevlakov K. A., Slin'ko A. M., Shestakov I. P., Shirshov A. I., Rings that are nearly associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York – London, 1982 | MR | Zbl