Derivations of the Moyal Algebra and Noncommutative Gauge Theories
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The differential calculus based on the derivations of an associative algebra underlies most of the noncommutative field theories considered so far. We review the essential properties of this framework and the main features of noncommutative connections in the case of non graded associative unital algebras with involution. We extend this framework to the case of ${\mathbb Z}_2$-graded unital involutive algebras. We show, in the case of the Moyal algebra or some related ${\mathbb Z}_2$-graded version of it, that the derivation based differential calculus is a suitable framework to construct Yang–Mills–Higgs type models on Moyal (or related) algebras, the covariant coordinates having in particular a natural interpretation as Higgs fields. We also exhibit, in one situation, a link between the renormalisable NC $\varphi^4$-model with harmonic term and a gauge theory model. Some possible consequences of this are briefly discussed.
Keywords: noncommutative geometry; noncommutative gauge theories.
@article{SIGMA_2009_5_a12,
     author = {Jean-Christophe Wallet},
     title = {Derivations of the {Moyal} {Algebra} and {Noncommutative} {Gauge} {Theories}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a12/}
}
TY  - JOUR
AU  - Jean-Christophe Wallet
TI  - Derivations of the Moyal Algebra and Noncommutative Gauge Theories
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a12/
LA  - en
ID  - SIGMA_2009_5_a12
ER  - 
%0 Journal Article
%A Jean-Christophe Wallet
%T Derivations of the Moyal Algebra and Noncommutative Gauge Theories
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a12/
%G en
%F SIGMA_2009_5_a12
Jean-Christophe Wallet. Derivations of the Moyal Algebra and Noncommutative Gauge Theories. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a12/

[1] Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Mod. Phys., 73 (2001), 977–1029 ; hep-th/0106048 | DOI | MR

[2] Szabo R. J., “Quantum field theory on noncommutative spaces”, Phys. Rept., 378 (2003), 207–299 ; hep-th/0109162 | DOI | MR | Zbl

[3] Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994 ; http://www.alainconnes.org/downloads.html | MR | Zbl

[4] Connes A., Marcolli M., A walk in the noncommutative garden, available at , 2006 http://www.alainconnes.org/downloads.html

[5] Schomerus V., “D-branes and deformation quantization”, J. High Energy Phys., 1999:6 (1999), 030, 14 pp., ages ; hep-th/9903205 | DOI | MR | Zbl

[6] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:9 (1999), 032, 93 pp., ages ; hep-th/9908142 | DOI | MR | Zbl

[7] Gracia-Bondía J. M., Várilly J. C., “Algebras of distributions suitable for phase space quantum mechanics. I”, J. Math. Phys., 29 (1988), 869–879 | DOI | MR | Zbl

[8] Várilly J. C., Gracia-Bondía J. M., “Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra”, J. Math. Phys., 29 (1988), 880–887 | DOI | MR

[9] Minwalla S., Van Raamsdonk M., Seiberg N., “Noncommutative perturbative dynamics”, J. High Energy Phys., 2000:2 (2000), 020, 31 pp., ages ; hep-th/9912072 | DOI | MR

[10] Chepelev I., Roiban R., “Renormalization of quantum field theories on noncommutative $\mathbb R^d$. I. Scalars”, J. High Energy Phys., 2000:5 (2000), 037, 31 pp., ages ; hep-th/9911098 | DOI | MR | Zbl

[11] Matusis A., Susskind L., Toumbas N., “The IR/UV connection in the non-commutative gauge theories”, J. High Energy Phys., 2000:12 (2000), 002, 18 pp., ages ; hep-th/0002075 | DOI | MR | Zbl

[12] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374 ; hep-th/0401128 | DOI | MR | Zbl

[13] Grosse H., Wulkenhaar R., “Power-counting theorem for non-local matrix models and renormalisation”, Comm. Math. Phys., 254 (2005), 91–127 ; hep-th/0305066 | DOI | MR | Zbl

[14] Rivasseau V., Non-commutative renormalization, arXiv:0705.0705 | MR

[15] Wallet J. C., “Noncommutative induced gauge theories on Moyal spaces”, J. Phys. Conf. Ser., 103 (2008), 012007, 20 pp., ages ; arXiv:0708.2471 | DOI

[16] Langmann E., Szabo R. J., “Duality in scalar field theory on noncommutative phase spaces”, Phys. Lett. B, 533 (2002), 168–177 ; hep-th/0202039 | DOI | MR | Zbl

[17] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$-theory on noncommutative $\mathbb R^2$ in the matrix base”, J. High Energy Phys., 2003:12 (2003), 019 ; hep-th/0307017 | DOI | MR

[18] Langmann E., Szabo R. J., Zarembo K., “Exact solution of quantum field theory on noncommutative phase spaces”, J. High Energy Phys., 2004:1 (2004), 017, 69 pp., ages ; hep-th/0308043 | DOI | MR

[19] Langmann E., Szabo R. J., Zarembo K., “Exact solution of noncommutative field theory in background magnetic fields”, Phys. Lett. B, 569 (2003), 95–101 ; hep-th/0303082 | DOI | MR | Zbl

[20] Vignes-Tourneret F., “Renormalization of the orientable non-commutative Gross–Neveu model”, Ann. Henri Poincaré, 8 (2007), 427–474 ; math-ph/0606069 | DOI | MR | Zbl

[21] Grosse H., Wulkenhaar R., “The $\beta$-function in duality-covariant noncommutative $\phi^4$ theory”, Eur. Phys. J. C Part. Fields, 35 (2004), 277–282 ; hep-th/0402093 | DOI | MR

[22] Lakhoua A., Vignes-Tourneret F., Wallet J. C., “One-loop $\beta$-functions for the orientable non-commutative Gross–Neveu model”, Eur. Phys. J. C Part. Fields, 52 (2007), 735–742 ; hep-th/0701170 | DOI

[23] Disertori M., Gurau R., Magnen J., Rivasseau V., “Vanishing of beta function of non commutative $\phi_4^4$ theory to all orders”, Phys. Lett. B, 649 (2007), 95–102 ; hep-th/0612251 | DOI | MR

[24] Gurau R., Magnen J., Rivasseau V., Tanasa A., A translation-invariant renormalizable non-commutative scalar model, arXiv:0802.0791

[25] Blaschke D. N., Gieres F., Kronberger E., Schweda M., Wohlgenannt M., “Translation-invariant models for non-commutative gauge fields”, J. Phys. A: Math. Theor., 41 (2008), 252002, 7 pp., ages ; arXiv:0804.1914 | DOI | MR | Zbl

[26] de Goursac A., Wallet J. C., Wulkenhaar R., “Noncommutative induced gauge theory”, Eur. Phys. J. C Part. Fields, 51 (2007), 977–987 ; hep-th/0703075 | DOI | MR

[27] Grosse H., Wohlgenannt M., “Induced gauge theory on a noncommutative space”, Eur. Phys. J. C Part. Fields, 52 (2007), 435–450 ; hep-th/0703169 | DOI | MR

[28] de Goursac A., “On the effective action of noncommutative Yang–Mills theory”, J. Phys. Conf. Ser., 103 (2008), 012010, 16 pp., ages ; arXiv:0710.1162 | DOI

[29] Grosse H., Wohlgennant M., “Noncommutative QFT and renormalization”, J. Phys. Conf. Ser., 53 (2006), 764–792 ; hep-th/0607208 | DOI

[30] de Goursac A., Wallet J. C., Wulkenhaar R., “On the vacuum states for noncommutative gauge theories”, Eur. Phys. J. C Part. Fields, 56 (2008), 293–304 ; arXiv:0803.3035 | DOI | MR

[31] de Goursac A., Tanasa A., Wallet J. C., “Vacuum configurations for renormalizable non-commutative scalar models”, Eur. Phys. J. C Part. Fields, 53 (2008), 459–466 ; arXiv:0709.3950 | DOI | MR

[32] Dubois-Violette M., “Dérivations et calcul différentiel non commutatif”, C. R. Acad. Sci. Paris Sér. I Math., 307 (1988), 403–408 | MR | Zbl

[33] Dubois-Violette M., Michor P. W., “Dérivations et calcul différentiel non commutatif. II”, C. R. Acad. Sci. Paris Sér. I Math., 319 (1994), 927–931 | MR | Zbl

[34] Dubois-Violette M., Kerner R., Madore J., “Noncommutative differential geometry of matrix algebras”, J. Math. Phys., 31 (1990), 316–322 | DOI | MR | Zbl

[35] Dubois-Violette M., Michor P. W., “Connections on central bimodules in noncommutative differential geometry”, J. Geom. Phys., 20 (1996), 218–232 ; q-alg/9503020 | DOI | MR | Zbl

[36] Dubois-Violette M., “Lectures on graded differential algebras and noncommutative geometry”, Proc. of the Workshop on Noncommutative Differential Geometry and Its Applications to Physics (Shonan, Japan, 1999), Math. Phys. Stud., 23, eds. Y. Maeda et al., Kluwer Academic Publishers, Dordrecht, 2001, 245–306 ; math.QA/9912017 | MR | Zbl

[37] Dubois-Violette M., Kerner R., Madore J., “Noncommutative differential geometry and new models of gauge theory”, J. Math. Phys., 31 (1990), 323–330 | DOI | MR | Zbl

[38] Dubois-Violette M., Masson T., “$SU(n)$-connections and noncommutative differential geometry”, J. Geom. Phys., 25 (1998), 104–118 ; dg-ga/9612017 | DOI | MR | Zbl

[39] Masson T., “On the noncommutative geometry of the endomorphism algebra of a vector bundle”, J. Geom. Phys., 31 (1999), 142–152 ; ; Masson T., “Submanifolds and quotient manifolds in noncommutative geometry”, J. Math. Phys., 37 (1996), 2484–2497 ; math.DG/9803088q-alg/9507030 | DOI | MR | Zbl | DOI | MR | Zbl

[40] Masson T., “Noncommutative generalization of $SU(n)$-principal fiber bundles: a review”, J. Phys. Conf. Ser., 103 (2008), 012003, 33 pp., ages ; arXiv:0709.0856 | DOI

[41] Cagnache E., Masson T., Wallet J. C., Noncommutative Yang–Mills–Higgs actions from derivation-based differential calculus, arXiv:0804.3061

[42] Marmo G., Vitale P., Zampini A., “Noncommutative differential calculus for Moyal subalgebras”, J. Geom. Phys., 56 (2006), 611–622 ; hep-th/0411223 | DOI | MR | Zbl

[43] Scheunert M., “Generalized Lie algebras”, J. Math. Phys., 20 (1979), 712–720 | DOI | MR | Zbl

[44] de Goursac A., Masson T., Wallet J. C., Noncommutative $\varepsilon$-graded connections and application to Moyal space, arXiv:0811.3567

[45] Quillen D., “Superconnections and the Chern character”, Topology, 24 (1985), 89–95 | MR | Zbl

[46] de Goursac A., Masson T., Wallet J. C., Work in progress

[47] Estrada R., Gracia-Bondía J. M., Várilly J. C., “On asymptotic expansions of twisted products”, J. Math. Phys., 30 (1989), 2789–2796 | DOI | MR | Zbl

[48] Bichl A. A., Ertl M., Gerhold A., Grimstrup J. M., Grosse H., Popp L., Putz V., Schweda M., Wulkenhaar R., “Non-commutative $U(1)$ super Yang–Mills theory: Perturbative self-energy corrections”, Internat. J. Modern Phys. A, 19 (2004), 4231–4249 ; hep-th/0203141 | DOI | MR | Zbl

[49] Martin C. P., Sánchez-Ruiz D., “The one-loop UV divergent structure of $U(1)$ Yang–Mills theory on non-commutative $\mathbb R^4$”, Phys. Rev. Lett., 83 (1999), 476–479 ; ; Grosse H., Krajewski T., Wulkenhaar R., Renormalisation of non-commutative Yang–Mills theories: a simple example, hep-th/9903077hep-th/0001182 | DOI | MR | Zbl

[50] Slavnov A. A., “Consistent noncommutative quantum gauge theories”, Phys. Lett. B, 565 (2003), 246–252 ; hep-th/0304141 | DOI | MR | Zbl

[51] Wallet J. C., “Algebraic set-up for the gauge-fixing of BF and SuperBF systems”, Phys. Lett. B, 235 (1990), 71–78 | DOI | MR

[52] Birmingham D., Blau M., Rakowski M., Thomson G., “Topological field theory”, Phys. Rep., 209 (1991), 129–340 | DOI | MR