@article{SIGMA_2009_5_a110,
author = {Najla Mellouli},
title = {Second-Order {Conformally} {Equivariant} {Quantization} in {Dimension} $1|2$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/}
}
Najla Mellouli. Second-Order Conformally Equivariant Quantization in Dimension $1|2$. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/
[1] Cohen P., Manin Yu., Zagier D., “Automorphic pseudodifferential operators”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, 17–47 | MR | Zbl
[2] Conley C., “Conformal symbols and the action of contact vector fields over the superline”, J. Reine Angew. Math., 633 (2009), 115–163 ; arXiv:0712.1780 | MR | Zbl
[3] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029 ; math.DG/9902032 | MR | Zbl
[4] Fregier Y., Mathonet P., Poncin N., “Decomposition of symmetric tensor fields in the presence of a flat contact projective structure”, J. Nonlinear Math. Phys., 15 (2008), 252–269 ; math.DG/0703922 | DOI | MR | Zbl
[5] Gargoubi H., Mellouli N., Ovsienko V., “Differential operators on supercircle: conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79 (2007), 51–65 ; math-ph/0610059 | DOI | MR | Zbl
[6] Grozman P., Leites D., Shchepochkina I., “Lie superalgebras of string theories”, Acta Math. Vietnam., 26 (2001), 27–63 ; hep-th/9702120 | MR | Zbl
[7] Grozman P., Leites D., Shchepochkina I., “Invariant operators on supermanifolds and standard models”, Multiple Facets of Quantization and Supersymmetry, eds. M. Olshanetski and A. Vainstein, World Sci. Publ., River Edge, NJ, 2002, 508–555 ; math.RT/0202193 | MR | Zbl
[8] Lecomte P. B. A., Ovsienko V. Yu., “Projectively invariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196 ; math.DG/9809061 | DOI | MR | Zbl
[9] Leites D., Supermanifold theory, Petrozavodsk, 1983 (in Russian)
[10] Leites D., Kochetkov Yu., Weintrob A., “New invariant differential operators on supermanifolds and pseudo-(co)homology”, General Topology and Applications (Staten Island, NY, 1989), Lecture Notes in Pure and Appl. Math., 134, Dekker, New York, 1991, 217–238 | MR
[11] Michel J.-P., Duval C., “On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative”, Int. Math. Res. Not. IMRN, 2008, no. 14 (2008), Art. ID rnn054, 47 pp., ages ; arXiv:0710.1544 | MR
[12] Ovsienko V., “Vector fields in the presence of a contact structure”, Enseign. Math. (2), 52 (2006), 215–229 ; math.DG/0511499 | MR | Zbl
[13] Ovsienko V. Yu., Ovsienko O. D., Chekanov Yu. V., “Classification of contact-projective structures on the supercircle”, Russian Math. Surveys, 44:3 (1989), 212–213 | DOI | MR | Zbl
[14] Shchepochkina I. M., “How to realize Lie algebras by vector fields”, Theoret. and Math. Phys., 147:3 (2006), 821–838 ; math.RT/0509472 | DOI | MR | Zbl