Second-Order Conformally Equivariant Quantization in Dimension $1|2$
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and $1|1$. We will show that the case of several odd variables is much more difficult. We consider the supercircle $S^{1|2}$ equipped with the standard contact structure. The conformal Lie superalgebra $\mathcal K(2)$ of contact vector fields on $S^{1|2}$ contains the Lie superalgebra $\mathrm{osp}(2|2)$. We study the spaces of linear differential operators on the spaces of weighted densities as modules over $\mathrm{osp}(2|2)$. We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as $\mathrm{osp}(2|2)$-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
Mots-clés : equivariant quantization; conformal superalgebra.
@article{SIGMA_2009_5_a110,
     author = {Najla Mellouli},
     title = {Second-Order {Conformally} {Equivariant} {Quantization} in {Dimension} $1|2$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/}
}
TY  - JOUR
AU  - Najla Mellouli
TI  - Second-Order Conformally Equivariant Quantization in Dimension $1|2$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/
LA  - en
ID  - SIGMA_2009_5_a110
ER  - 
%0 Journal Article
%A Najla Mellouli
%T Second-Order Conformally Equivariant Quantization in Dimension $1|2$
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/
%G en
%F SIGMA_2009_5_a110
Najla Mellouli. Second-Order Conformally Equivariant Quantization in Dimension $1|2$. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a110/

[1] Cohen P., Manin Yu., Zagier D., “Automorphic pseudodifferential operators”, Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., 26, Birkhäuser Boston, Boston, MA, 1997, 17–47 | MR | Zbl

[2] Conley C., “Conformal symbols and the action of contact vector fields over the superline”, J. Reine Angew. Math., 633 (2009), 115–163 ; arXiv:0712.1780 | MR | Zbl

[3] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029 ; math.DG/9902032 | MR | Zbl

[4] Fregier Y., Mathonet P., Poncin N., “Decomposition of symmetric tensor fields in the presence of a flat contact projective structure”, J. Nonlinear Math. Phys., 15 (2008), 252–269 ; math.DG/0703922 | DOI | MR | Zbl

[5] Gargoubi H., Mellouli N., Ovsienko V., “Differential operators on supercircle: conformally equivariant quantization and symbol calculus”, Lett. Math. Phys., 79 (2007), 51–65 ; math-ph/0610059 | DOI | MR | Zbl

[6] Grozman P., Leites D., Shchepochkina I., “Lie superalgebras of string theories”, Acta Math. Vietnam., 26 (2001), 27–63 ; hep-th/9702120 | MR | Zbl

[7] Grozman P., Leites D., Shchepochkina I., “Invariant operators on supermanifolds and standard models”, Multiple Facets of Quantization and Supersymmetry, eds. M. Olshanetski and A. Vainstein, World Sci. Publ., River Edge, NJ, 2002, 508–555 ; math.RT/0202193 | MR | Zbl

[8] Lecomte P. B. A., Ovsienko V. Yu., “Projectively invariant symbol calculus”, Lett. Math. Phys., 49 (1999), 173–196 ; math.DG/9809061 | DOI | MR | Zbl

[9] Leites D., Supermanifold theory, Petrozavodsk, 1983 (in Russian)

[10] Leites D., Kochetkov Yu., Weintrob A., “New invariant differential operators on supermanifolds and pseudo-(co)homology”, General Topology and Applications (Staten Island, NY, 1989), Lecture Notes in Pure and Appl. Math., 134, Dekker, New York, 1991, 217–238 | MR

[11] Michel J.-P., Duval C., “On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative”, Int. Math. Res. Not. IMRN, 2008, no. 14 (2008), Art. ID rnn054, 47 pp., ages ; arXiv:0710.1544 | MR

[12] Ovsienko V., “Vector fields in the presence of a contact structure”, Enseign. Math. (2), 52 (2006), 215–229 ; math.DG/0511499 | MR | Zbl

[13] Ovsienko V. Yu., Ovsienko O. D., Chekanov Yu. V., “Classification of contact-projective structures on the supercircle”, Russian Math. Surveys, 44:3 (1989), 212–213 | DOI | MR | Zbl

[14] Shchepochkina I. M., “How to realize Lie algebras by vector fields”, Theoret. and Math. Phys., 147:3 (2006), 821–838 ; math.RT/0509472 | DOI | MR | Zbl