@article{SIGMA_2009_5_a11,
author = {Ta Khongsap and Weiqiang Wang},
title = {Hecke{\textendash}Clifford {Algebras} and {Spin} {Hecke} {Algebras~IV:} {Odd} {Double} {Affine} {Type}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a11/}
}
TY - JOUR AU - Ta Khongsap AU - Weiqiang Wang TI - Hecke–Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a11/ LA - en ID - SIGMA_2009_5_a11 ER -
Ta Khongsap; Weiqiang Wang. Hecke–Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a11/
[1] Bazlov Y., Berenstein A., Noncommutative Dunkl operators and braided Cherednik algebras, arXiv:0806.0867 | MR
[2] Drinfeld V., “Degenerate affine Hecke algebras and Yangians”, Funct. Anal. Appl., 20 (1986), 58–60 | DOI | MR
[3] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl
[4] Dunkl C. F., Opdam E. M., “Dunkl operators for complex reflection groups”, Proc. London Math. Soc. (3), 86 (2003), 70–108 ; math.RT/0108185 | DOI | MR | Zbl
[5] Etingof P., Ginzburg V., “Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism”, Invent. Math., 147 (2002), 243–348 ; math.AG/0011114 | DOI | MR | Zbl
[6] Ihara S., Yokonuma T., “On the second cohomology groups (Schur-multipliers) of finite reflection groups”, J. Fac. Sci. Univ. Tokyo Sect. I, 11 (1965), 155–171 | MR | Zbl
[7] Karpilovsky G., The Schur multiplier, London Mathematical Society Monographs, New Series, 2, The Clarendon Press, Oxford University Press, New York, 1987 | MR
[8] Khongsap T., Hecke–Clifford algebras and spin Hecke algebras III: the trigonometric type, arXiv:0808.2951 | MR
[9] Khongsap T., Wang W., “Hecke–Clifford algebras and spin Hecke algebras I: the classical affine type”, Transform. Groups, 13 (2008), 389–412 ; arXiv:0704.0201 | DOI | MR | Zbl
[10] Khongsap T., Wang W., “Hecke–Clifford algebras and spin Hecke algebras II: the rational double affine type”, Pacific J. Math., 238 (2008), 73–103 ; arXiv:0710.5877 | DOI | MR | Zbl
[11] Lusztig G., “Affine Hecke algebras and their graded version”, J. Amer. Math. Soc., 2 (1989), 599–635 | DOI | MR | Zbl
[12] Morris A., “Projective representations of reflection groups”, Proc. London Math. Soc. (3), 32 (1976), 403–420 | DOI | MR | Zbl
[13] Nazarov M., “Young's symmetrizers for projective representations of the symmetric group”, Adv. Math., 127 (1997), 190–257 | DOI | MR | Zbl
[14] Rouquier R., “Representations of rational Cherednik algebras”, Infinite-Dimensional Aspects of Representation Theory and Applications (Charlottesville, 2004), Contemp. Math., 392, 2005, 103–131 ; math.RT/0504600 | MR | Zbl
[15] Schur I., “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen”, J. Reine Angew. Math., 139 (1911), 155–250 | Zbl
[16] Wang W., Double affine Hecke algebras for the spin symmetric group, math.RT/0608074 | MR
[17] Wang W., “Spin Hecke algebras of finite and affine types”, Adv. Math., 212 (2007), 723–748 ; math.RT/0611950 | DOI | MR | Zbl