Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we construct the quantum spectral curve for the quantum dynamical elliptic $\mathfrak{gl}_n$ Gaudin model. We realize it considering a commutative family corresponding to the Felder's elliptic quantum group $E_{\tau,\hbar}(\mathfrak{gl}_n)$ and taking the appropriate limit. The approach of Manin matrices here suits well to the problem of constructing the generation function of commuting elements which plays an important role in SoV and Langlands concept.
Keywords: Manin matrices; $L$-operators; elliptic Felder $R$-matrix; Gaudin models.
@article{SIGMA_2009_5_a109,
     author = {Vladimir Rubtsov and Alexey Silantyev and Dmitri Talalaev},
     title = {Manin {Matrices,} {Quantum} {Elliptic} {Commutative} {Families} and {Characteristic} {Polynomial} of {Elliptic} {Gaudin} {Model}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/}
}
TY  - JOUR
AU  - Vladimir Rubtsov
AU  - Alexey Silantyev
AU  - Dmitri Talalaev
TI  - Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/
LA  - en
ID  - SIGMA_2009_5_a109
ER  - 
%0 Journal Article
%A Vladimir Rubtsov
%A Alexey Silantyev
%A Dmitri Talalaev
%T Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/
%G en
%F SIGMA_2009_5_a109
Vladimir Rubtsov; Alexey Silantyev; Dmitri Talalaev. Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/

[1] Kulish P., Sklyanin E., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Phys., 151, Springer, Berlin – New York, 1982, 61–119 | MR

[2] Kirillov A., Reshetikhin N., “The Yangians, Bethe ansatz and combinatorics”, Lett. Math. Phys., 12 (1986), 199–208 | DOI | MR | Zbl

[3] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1247–1255 ; hep-th/9407154 | MR | Zbl

[4] Felder G., “Elliptic quantum groups”, Proceedings of the XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 211–218 ; hep-th/9412207 | MR | Zbl

[5] Chervov A., Falqui G., “Manin matrices and Talalaev's formula”, J. Phys. A: Math. Theor., 41 (2008), 194006, 28 pp., ages ; arXiv:0711.2236 | DOI | MR | Zbl

[6] Chervov A., Falqui G., Rubtsov V., “Algebraic properties of Manin matrices. I”, Adv. in Appl. Math., 43 (2009), 239–315 ; arXiv:0901.0235 | DOI | MR | Zbl

[7] Felder G., Varchenko A., “Elliptic quantum groups and Ruijsenaars models”, J. Statist. Phys., 89 (1997), 963–980 ; q-alg/9704005 | DOI | MR | Zbl

[8] Zhao S.-Y., Shi K.-J., Yue R.-H., “The center for the elliptic quantum group $E_{\tau,\eta}(\mathfrak{sl}_n)$”, Commun. Theor. Phys., 39 (2003), 67–72 ; math.QA/0412100 | MR

[9] Nazarov M., Olshanski G., “Bethe subalgebras in twisted Yangians”, Comm. Math. Phys., 178 (1996), 483–506 ; q-alg/9507003 | DOI | MR | Zbl

[10] Molev A. I., “Yangians and their applications”, Handbook of Algebra, Vol. 3, ed. M. Hazewinkel, North-Holland, Amsterdam, 2003, 907–959 ; math.QA/0211288 | MR

[11] Avan J., Babelon O., Billey E., “The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems”, Comm. Math. Phys., 178 (1996), 281–299 ; hep-th/9505091 | DOI | MR | Zbl

[12] Talalaev D., “Universal $R$-matrix formalism for the spin Calogero–Moser system and its difference counterpart”, Internat. Math. Res. Notices, 2000:11 (2000), 597–606 ; math.QA/9909014 | DOI | MR | Zbl

[13] Talalaev D., “Quantization of the Gaudin system”, Funct. Anal. Appl., 40:1 (2006), 73–77 ; hep-th/0404153 | DOI | MR | Zbl

[14] Tarasov V., Varchenko A., “Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$”, Mosc. Math. J., 1:2 (2001), 243–286 ; math.QA/0011145 | MR | Zbl

[15] Chervov A., Falqui G., Rubtsov V., Silantyev A., Algebraic properties of Manin matrices II. $q$-analogues and integrable systems (to appear)

[16] Kojima T., Konno H., “The elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}_N})$ and the Drinfel'd realization of the elliptic quantum group ${\cal B}_{q,\lambda}(\widehat{\mathfrak{sl}_N})$”, Comm. Math. Phys., 239 (2003), 405–447 ; math.QA/0210383 | DOI | MR | Zbl

[17] Konno H., “Elliptic quantum group $U_{q,p}(\widehat{\mathfrak{sl}_2})$, Hopf algebroid structure and elliptic hypergeometric series”, J. Geom. Phys., 59 (2009), 1485–1511 ; arXiv:0803.2292 | DOI | MR | Zbl

[18] Enriquez B., Feigin B., Rubtsov V., “Separation of variables for Gaudin–Calogero systems”, Compositio Math., 110 (1998), 1–16 ; q-alg/9605030 | DOI | MR | Zbl

[19] Felder G., Schorr A., “Separation of variables for quantum integrable systems on elliptic curves”, J. Phys. A: Math. Gen., 32 (1999), 8001–8022 ; math.QA/9905072 | DOI | MR | Zbl

[20] Pakuliak S., Rubtsov V., Silantyev A., “Classical elliptic current algebras. I”, J. Gen. Lie Theory Appl., 2 (2008), 65–78 ; Pakuliak S., Rubtsov V., Silantyev A., “Classical elliptic current algebras. II”, J. Gen. Lie Theory Appl., 2 (2008), 79–93 ; arXiv:0709.3592 | MR | Zbl | MR | Zbl

[21] Enriquez B., Felder G., “Elliptic quantum groups $E_{\tau,\eta}(\mathfrak{sl}_2)$ and quasi-Hopf algebras”, Comm. Math. Phys., 195 (1998), 651–689 ; q-alg/9703018 | DOI | MR | Zbl

[22] Chervov A., Talalaev D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, hep-th/0604128

[23] Chervov A., Talalaev D., “KZ equation, G-opers, quantum Drinfeld–Sokolov reduction and quantum Cayley–Hamilton identity”, J. Math. Sci., 158 (2009), 904–911 ; hep-th/0607250 | DOI | Zbl

[24] Gould M. D., Zhang Y.-Z., Zhao S.-Y., “Elliptic Gaudin models and elliptic KZ equations”, Nuclear Phys. B, 630 (2002), 492–508 ; nlin.SI/0110038 | DOI | MR | Zbl