@article{SIGMA_2009_5_a109,
author = {Vladimir Rubtsov and Alexey Silantyev and Dmitri Talalaev},
title = {Manin {Matrices,} {Quantum} {Elliptic} {Commutative} {Families} and {Characteristic} {Polynomial} of {Elliptic} {Gaudin} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/}
}
TY - JOUR AU - Vladimir Rubtsov AU - Alexey Silantyev AU - Dmitri Talalaev TI - Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/ LA - en ID - SIGMA_2009_5_a109 ER -
%0 Journal Article %A Vladimir Rubtsov %A Alexey Silantyev %A Dmitri Talalaev %T Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/ %G en %F SIGMA_2009_5_a109
Vladimir Rubtsov; Alexey Silantyev; Dmitri Talalaev. Manin Matrices, Quantum Elliptic Commutative Families and Characteristic Polynomial of Elliptic Gaudin Model. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a109/
[1] Kulish P., Sklyanin E., “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Phys., 151, Springer, Berlin – New York, 1982, 61–119 | MR
[2] Kirillov A., Reshetikhin N., “The Yangians, Bethe ansatz and combinatorics”, Lett. Math. Phys., 12 (1986), 199–208 | DOI | MR | Zbl
[3] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1247–1255 ; hep-th/9407154 | MR | Zbl
[4] Felder G., “Elliptic quantum groups”, Proceedings of the XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, 211–218 ; hep-th/9412207 | MR | Zbl
[5] Chervov A., Falqui G., “Manin matrices and Talalaev's formula”, J. Phys. A: Math. Theor., 41 (2008), 194006, 28 pp., ages ; arXiv:0711.2236 | DOI | MR | Zbl
[6] Chervov A., Falqui G., Rubtsov V., “Algebraic properties of Manin matrices. I”, Adv. in Appl. Math., 43 (2009), 239–315 ; arXiv:0901.0235 | DOI | MR | Zbl
[7] Felder G., Varchenko A., “Elliptic quantum groups and Ruijsenaars models”, J. Statist. Phys., 89 (1997), 963–980 ; q-alg/9704005 | DOI | MR | Zbl
[8] Zhao S.-Y., Shi K.-J., Yue R.-H., “The center for the elliptic quantum group $E_{\tau,\eta}(\mathfrak{sl}_n)$”, Commun. Theor. Phys., 39 (2003), 67–72 ; math.QA/0412100 | MR
[9] Nazarov M., Olshanski G., “Bethe subalgebras in twisted Yangians”, Comm. Math. Phys., 178 (1996), 483–506 ; q-alg/9507003 | DOI | MR | Zbl
[10] Molev A. I., “Yangians and their applications”, Handbook of Algebra, Vol. 3, ed. M. Hazewinkel, North-Holland, Amsterdam, 2003, 907–959 ; math.QA/0211288 | MR
[11] Avan J., Babelon O., Billey E., “The Gervais–Neveu–Felder equation and the quantum Calogero–Moser systems”, Comm. Math. Phys., 178 (1996), 281–299 ; hep-th/9505091 | DOI | MR | Zbl
[12] Talalaev D., “Universal $R$-matrix formalism for the spin Calogero–Moser system and its difference counterpart”, Internat. Math. Res. Notices, 2000:11 (2000), 597–606 ; math.QA/9909014 | DOI | MR | Zbl
[13] Talalaev D., “Quantization of the Gaudin system”, Funct. Anal. Appl., 40:1 (2006), 73–77 ; hep-th/0404153 | DOI | MR | Zbl
[14] Tarasov V., Varchenko A., “Small elliptic quantum group $e_{\tau,\gamma}(\mathfrak{sl}_N)$”, Mosc. Math. J., 1:2 (2001), 243–286 ; math.QA/0011145 | MR | Zbl
[15] Chervov A., Falqui G., Rubtsov V., Silantyev A., Algebraic properties of Manin matrices II. $q$-analogues and integrable systems (to appear)
[16] Kojima T., Konno H., “The elliptic algebra $U_{q,p}(\widehat{\mathfrak{sl}_N})$ and the Drinfel'd realization of the elliptic quantum group ${\cal B}_{q,\lambda}(\widehat{\mathfrak{sl}_N})$”, Comm. Math. Phys., 239 (2003), 405–447 ; math.QA/0210383 | DOI | MR | Zbl
[17] Konno H., “Elliptic quantum group $U_{q,p}(\widehat{\mathfrak{sl}_2})$, Hopf algebroid structure and elliptic hypergeometric series”, J. Geom. Phys., 59 (2009), 1485–1511 ; arXiv:0803.2292 | DOI | MR | Zbl
[18] Enriquez B., Feigin B., Rubtsov V., “Separation of variables for Gaudin–Calogero systems”, Compositio Math., 110 (1998), 1–16 ; q-alg/9605030 | DOI | MR | Zbl
[19] Felder G., Schorr A., “Separation of variables for quantum integrable systems on elliptic curves”, J. Phys. A: Math. Gen., 32 (1999), 8001–8022 ; math.QA/9905072 | DOI | MR | Zbl
[20] Pakuliak S., Rubtsov V., Silantyev A., “Classical elliptic current algebras. I”, J. Gen. Lie Theory Appl., 2 (2008), 65–78 ; Pakuliak S., Rubtsov V., Silantyev A., “Classical elliptic current algebras. II”, J. Gen. Lie Theory Appl., 2 (2008), 79–93 ; arXiv:0709.3592 | MR | Zbl | MR | Zbl
[21] Enriquez B., Felder G., “Elliptic quantum groups $E_{\tau,\eta}(\mathfrak{sl}_2)$ and quasi-Hopf algebras”, Comm. Math. Phys., 195 (1998), 651–689 ; q-alg/9703018 | DOI | MR | Zbl
[22] Chervov A., Talalaev D., Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence, hep-th/0604128
[23] Chervov A., Talalaev D., “KZ equation, G-opers, quantum Drinfeld–Sokolov reduction and quantum Cayley–Hamilton identity”, J. Math. Sci., 158 (2009), 904–911 ; hep-th/0607250 | DOI | Zbl
[24] Gould M. D., Zhang Y.-Z., Zhao S.-Y., “Elliptic Gaudin models and elliptic KZ equations”, Nuclear Phys. B, 630 (2002), 492–508 ; nlin.SI/0110038 | DOI | MR | Zbl