Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently the study of Fay-type identities revealed some new features of the DKP hierarchy (also known as “the coupled KP hierarchy” and “the Pfaff lattice”). Those results are now extended to a Toda version of the DKP hierarchy (tentatively called “the Pfaff–Toda hierarchy”). Firstly, an auxiliary linear problem of this hierarchy is constructed. Unlike the case of the DKP hierarchy, building blocks of the auxiliary linear problem are difference operators. A set of evolution equations for dressing operators of the wave functions are also obtained. Secondly, a system of Fay-like identities (difference Fay identities) are derived. They give a generating functional expression of auxiliary linear equations. Thirdly, these difference Fay identities have well defined dispersionless limit (dispersionless Hirota equations). As in the case of the DKP hierarchy, an elliptic curve is hidden in these dispersionless Hirota equations. This curve is a kind of spectral curve, whose defining equation is identified with the characteristic equation of a subset of all auxiliary linear equations. The other auxiliary linear equations are related to quasi-classical deformations of this elliptic spectral curve.
Keywords: integrable hierarchy; auxiliary linear problem; Fay-like identity; dispersionless limit; spectral curve; quasi-classical deformation.
@article{SIGMA_2009_5_a108,
     author = {Kanehisa Takasaki},
     title = {Auxiliary {Linear} {Problem,} {Difference} {Fay} {Identities} and {Dispersionless} {Limit} of {Pfaff{\textendash}Toda} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a108/}
}
TY  - JOUR
AU  - Kanehisa Takasaki
TI  - Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a108/
LA  - en
ID  - SIGMA_2009_5_a108
ER  - 
%0 Journal Article
%A Kanehisa Takasaki
%T Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a108/
%G en
%F SIGMA_2009_5_a108
Kanehisa Takasaki. Auxiliary Linear Problem, Difference Fay Identities and Dispersionless Limit of Pfaff–Toda Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a108/

[1] Takasaki K., Differential Fay identities and auxiliary linear problem of integrable hierarchies, arXiv:0710.5356

[2] Jimbo M., Miwa T., “Soliton equations and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19 (1983), 943–1001 | DOI | MR | Zbl

[3] Kac V., van de Leur J., “The geometry of spinors and the multicomponent BKP and DKP hierarchies”, The Bispectral Problem (Montreal, PQ, 1997), CRM Proc. Lecture Notes, 14, Amer. Math. Soc., Providence, RI, 1998, 159–202 ; solv-int/9706006 | MR | Zbl

[4] Hirota R., Ohta Y., “Hierarchies of coupled soliton equations. I”, J. Phys. Soc. Japan, 60 (1991), 798–809 | DOI | MR | Zbl

[5] Adler M., Horozov E., van Moerbeke P., “The Pfaff lattice and skew-orthogonal polynomials”, Internat. Math. Res. Notices, 1999:11 (1999), 569–588 ; solv-int/9903005 | DOI | MR | Zbl

[6] Adler M., Shiota T., van Moerbeke P., “Pfaff $\tau$-functions”, Math. Ann., 322 (2002), 423–476 ; solv-int/9909010 | DOI | MR | Zbl

[7] Adler M., van Moerbeke P., “Toda versus Pfaff lattice and related polynomials”, Duke Math. J., 112 (2002), 1–58 | DOI | MR | Zbl

[8] Kakei S., “Orthogonal and symplectic matrix integrals and coupled KP hierarchy”, J. Phys. Soc. Japan, 99 (1999), 2875–2877 ; solv-int/9909023 | MR

[9] Kakei S., “Dressing method and the coupled KP hierarchy”, Phys. Lett. A, 264 (2000), 449–458 ; solv-int/9909024 | DOI | MR | Zbl

[10] van de Leur J., “Matrix integrals and the geometry of spinors”, J. Nonlinear Math. Phys., 8 (2001), 288–310 ; solv-int/9909028 | DOI | MR | Zbl

[11] Adler M., van Moerbeke P., “Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum”, Ann. of Math. (2), 153 (2001), 149–189 ; math-ph/0009001 | DOI | MR | Zbl

[12] Adler M., Kuznetsov V. B., van Moerbeke P., “Rational solutions to the Pfaff lattice and Jack polynomials”, Ergodic Theory Dynam. Systems, 22 (2002), 1365–1405 ; nlin.SI/0202037 | DOI | MR | Zbl

[13] Isojima S., Willox R., Satsuma J., “On various solutions of the coupled KP equation”, J. Phys. A: Math. Gen., 35 (2002), 6893–6909 | DOI | MR | Zbl

[14] Isojima S., Willox R., Satsuma J., “Spider-web solutions of the coupled KP equation”, J. Phys. A: Math. Gen., 36 (2003), 9533–9552 | DOI | MR | Zbl

[15] Kodama Y., Maruno K.-I., “$N$-soliton solutions to the DKP hierarchy and the Weyl group actions”, J. Phys. A: Math. Gen., 39 (2006), 4063–4086 ; nlin.SI/0602031 | DOI | MR | Zbl

[16] Kodama Y., Pierce V. U., Geometry of the Pfaff lattice, arXiv:0705.0510 | MR

[17] Willox R., “On a coupled Toda lattice and its reductions as derived from the coupled KP hierarchy”, Proceedings of the Research Institute for Applied Mechanics, Kyushu University, 2002, 18–23, 13ME-S4 (in Japanese)

[18] Willox R., “On a generalized Tzitzeica equation”, Glasgow Math. J., 47 (2005), 221–231 | DOI | MR

[19] Santini P. M., Nieszporski M., Doliwa A., “An integrable generalization of the Toda law to the square lattice”, Phys. Rev. E, 70 (2004), 056615, 6 pp., ages ; nlin.SI/0409050 | DOI | MR

[20] Hu X.-B., Li C.-X., Nimmo J. J. C., Yu G.-F., “An integrable symmetric $(2+1)$-dimensional Lotka–Volterra equation and a family of its solutions”, J. Phys. A: Math. Gen., 38 (2005), 195–204 | DOI | MR | Zbl

[21] Gilson C. R., Nimmo J. J. C., “The relation between a 2D Lotka–Volterra equation and a 2D Toda lattice”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 169–179 | DOI | MR | Zbl

[22] Zabrodin A. V., “Dispersionless limit of Hirota equations in some problems of complex analysis”, Theoret. and Math. Phys., 129:2 (2001), 1511–1525 ; math.CV/0104169 | DOI | MR | Zbl

[23] Teo L.-P., “Fay-like identities of the Toda lattice hierarchy and its dispersionless limit”, Rev. Math. Phys., 18 (2006), 1055–1073 ; nlin.SI/0606059 | DOI | MR | Zbl

[24] Kostov I. K., Krichever I., Mineev-Weinstein M., Wiegmann P. B., Zabrodin A., “$\tau$-function for analytic curve”, Random Matrices and Their Applications, Math. Sci. Res. Inst. Publ., 40, eds. P. Bleher and A. Its, Cambridge University Press, Cambridge, 2001, 285–299 ; hep-th/0005259 | MR | Zbl

[25] Boyarsky A., Marshakov A., Ruchayskiy O., Wiegmann P., Zabrodin A., “Associativity equations in dispersionless integrable hierarchies”, Phys. Lett. B, 515 (2001), 483–492 ; hep-th/0105260 | DOI | MR | Zbl

[26] Teo L.-P., “Analytic functions and integrable hierarchies – characterization of tau functions”, Lett. Math. Phys., 64 (2003), 75–92 ; hep-th/0305005 | DOI | MR | Zbl

[27] Kodama Y., Pierce V. U., Combinatorics of dispersionless integrable systems and universality in random matrix theory, arXiv:0811.0351 | MR

[28] Konopelchenko B., Martinez Alonso L., “Integrable quasi-classical deformations of algebraic curves”, J. Phys. A: Math. Gen., 37 (2004), 7859–7877 ; nlin.SI/0403052 | DOI | MR | Zbl

[29] Kodama Y., Konopelchenko B., Martinez Alonso L., “Integrable deformations of algebraic curves”, Theoret. and Math. Phys., 144:1 (2005), 961–967 | DOI | MR | Zbl

[30] Date E., Kashiwara M., Jimbo M., Miwa T., “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, 1981), World Scientific Publishing, Singapor, 1983, 39–119 | MR

[31] Dickey L., Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991 | MR | Zbl

[32] Kac V. G., van de Leur J. W., “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 302–343 ; hep-th/9308137 | MR | Zbl

[33] Takasaki K., Takebe T., “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7 (1995), 743–808 ; hep-th/9405096 | DOI | MR | Zbl