On Projective Equivalence of Univariate Polynomial Subspaces
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We pose and solve the equivalence problem for subspaces of $\mathcal P_n$, the $(n+1)$ dimensional vector space of univariate polynomials of degree $\leq n$. The group of interest is $\mathrm{SL}_2$ acting by projective transformations on the Grassmannian variety $\mathcal G_k\mathcal P_n$ of $k$-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms.
Keywords: polynomial subspaces; projective equivalence.
@article{SIGMA_2009_5_a106,
     author = {Peter Crooks and Robert Milson},
     title = {On {Projective} {Equivalence} of {Univariate} {Polynomial} {Subspaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a106/}
}
TY  - JOUR
AU  - Peter Crooks
AU  - Robert Milson
TI  - On Projective Equivalence of Univariate Polynomial Subspaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a106/
LA  - en
ID  - SIGMA_2009_5_a106
ER  - 
%0 Journal Article
%A Peter Crooks
%A Robert Milson
%T On Projective Equivalence of Univariate Polynomial Subspaces
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a106/
%G en
%F SIGMA_2009_5_a106
Peter Crooks; Robert Milson. On Projective Equivalence of Univariate Polynomial Subspaces. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a106/

[1] Abdesselam A., Chipalkatti J., “On the Wronskian combinants of binary forms”, J. Pure Appl. Algebra, 210 (2007), 43–61 ; math.AG/0507488 | DOI | MR | Zbl

[2] Chipalkatti J., Geramita A., “On parameter spaces for Artin level algebras”, Michigan Math. J., 51 (2003), 187–207 ; math.AG/0204017 | DOI | MR | Zbl

[3] Berchenko I., Olver P. J., “Symmetries of polynomials”, Symbolic Computation in Algebra, Analysis, and Geometry (Berkeley, CA, 1998), J. Symbolic Comput., 29:4–5 (2000), 485–514 | DOI | MR | Zbl

[4] Eremenko A., Gabrielov A., “The Wronski map and Grassmannians of real codimension 2 subspaces”, Comput. Methods Funct. Theory, 1 (2001), 1–25 | MR | Zbl

[5] Eastwood M., Michor P., “Some remarks on the Plucker relations”, The Proceedings of the 19th Winter School “Geometry and Physics” (Srni, 1999), Rend. Circ. Mat. Palermo (2) Suppl., 63, 2000, 85–88 ; math.AG/9905090 | MR | Zbl

[6] Eisenbud D., Harris J., “Divisors on general curves and cuspidal rational curves”, Invent. Math., 74 (1983), 371–418 | DOI | MR | Zbl

[7] Finkel F., Kamran N., “The Lie algebraic structure of differential operators admitting invariant spaces of polynomials”, Adv. in Appl. Math., 20 (1998), 300–322 ; arXiv:q-alg/9612027 | DOI | MR | Zbl

[8] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[9] Gómez-Ullate D., Kamran N., Milson R., “Quasi-exact solvability and the direct approach to invariant subspaces”, J. Phys. A: Math. Gen., 38 (2005), 2005–2019 ; arXiv:nlin.SI/0401030 | DOI | MR | Zbl

[10] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367 ; arXiv:0807.3939 | DOI | MR | Zbl

[11] Griffiths P. A., Harris J., Principles of algebraic geometry, 2nd ed., John Wiley Sons, New York, 1994 | MR | Zbl

[12] Hilbert D., Theory of algebraic invariants, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[13] Kharlamov V., Sottile F., “Maximally inflected real rational curves”, Mosc. Math. J., 3 (2003), 947–987 ; arXiv:math.AG/0206268 | MR | Zbl

[14] Kung J. P. S., Rota G.-R., “The invariant theory of binary forms”, Bull. Amer. Math. Soc. (N.S.), 10 (1984), 27–85 | DOI | MR | Zbl

[15] Mukhin E., Tarasov V., Varchenko A., “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz”, Ann. Math. (2), 170 (2009), 863–881 ; arXiv:math.AG/0512299 | MR | Zbl

[16] Olver P. J., Classical invariant theory, London Mathematical Society Student Texts, 44, Cambridge University Press, Cambridge, 1999 | MR

[17] Olver P. J., “Joint invariant signatures”, Found. Comput. Math., 1 (2001), 3–67 | DOI | MR | Zbl

[18] Scherbak I., “Rational functions with prescribed critical points”, Geom. Funct. Anal., 12 (2002), 1365–1380 ; ; Scherbak I., A theorem of Heine–Stieltjes, the Wronski map, and Bethe vectors in the $sl_p$ Gaudin model, arXiv:math.QA/0205168arXiv:math.AG/0211377 | DOI | MR | Zbl

[19] Shafarevich I. R., Basic algebraic geometry, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl