@article{SIGMA_2009_5_a105,
author = {Gilles Regniers and Joris Van der Jeugt},
title = {Wigner {Quantization} of {Hamiltonians} {Describing} {Harmonic} {Oscillators} {Coupled} by {a~General} {Interaction} {Matrix}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a105/}
}
TY - JOUR AU - Gilles Regniers AU - Joris Van der Jeugt TI - Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a105/ LA - en ID - SIGMA_2009_5_a105 ER -
%0 Journal Article %A Gilles Regniers %A Joris Van der Jeugt %T Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix %J Symmetry, integrability and geometry: methods and applications %D 2009 %V 5 %U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a105/ %G en %F SIGMA_2009_5_a105
Gilles Regniers; Joris Van der Jeugt. Wigner Quantization of Hamiltonians Describing Harmonic Oscillators Coupled by a General Interaction Matrix. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a105/
[1] Cramer M., Eisert J., “Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices”, New J. Phys., 8 (2006), 71.1–71.24 ; quant-ph/0509167 | DOI | MR
[2] Regniers G., Van der Jeugt J., “Analytically solvable Hamiltonians for quantum systems with a nearest-neighbour interaction”, J. Phys. A: Math. Theor., 42 (2009), 125301, 16 pp., ages ; arXiv:0902.2308 | DOI | MR | Zbl
[3] Wigner E. P., “Do the equations of motion determine the quantum mechanical commutation relations?”, Phys. Rev., 77 (1950), 711–712 | DOI | MR | Zbl
[4] Kamupingene A. H., Palev T. D., Tsavena S. P., “Wigner quantum systems. Two particles interacting via a harmonic potential. I. Two-dimensional space”, J. Math. Phys., 27 (1986), 2067–2075 | DOI | MR | Zbl
[5] Green H. S., “A generalized method of field quantization”, Phys. Rev., 90 (1953), 270–273 | DOI | MR | Zbl
[6] Palev T. D., “Wigner approach to quantization. Noncanonical quantization of two particles interacting via a harmonic potential”, J. Math. Phys., 23 (1982), 1778–1784 | DOI | MR | Zbl
[7] Palev T. D., Stoilova N. I., “Many-body Wigner quantum systems”, J. Math. Phys., 38 (1997), 2506–2523 | DOI | MR | Zbl
[8] Błasiak P., Horzela A., Kapuścik E., “Alternative hamiltonians and Wigner quantization”, J. Opt. B: Quantum Semiclass. Opt., 5 (2003), S245–S260 | DOI | MR
[9] Lievens S., Stoilova N. I., Van der Jeugt J., “Harmonic oscillators coupled by springs: discrete solutions as a Wigner quantum system”, J. Math. Phys., 47 (2006), 113504, 23 pp., ages ; hep-th/0606192 | DOI | MR | Zbl
[10] Lievens S., Stoilova N. I., Van der Jeugt J., “Harmonic oscillator chains as Wigner quantum systems: periodic and fixed wall boundary conditions in $\mathfrak{gl}(1|n)$ solutions”, J. Math. Phys., 49 (2008), 073502, 22 pp., ages ; arXiv:0709.0180 | DOI | MR | Zbl
[11] Lievens S., Van der Jeugt J., “Spectrum generating functions for non-canonical quantum oscillators”, J. Phys. A: Math. Theor., 41 (2008), 355204, 20 pp., ages | DOI | MR | Zbl
[12] Cohen-Tannoudji C., Diu B., Laloë F., Quantum mechanics, Vol. 1, Wiley, New York, 1977
[13] Brun T. A., Hartle J. B., “Classical dynamics of the quantum harmonic chain”, Phys. Rev. D, 60 (1999), 123503, 20 pp., ages ; quant-ph/9905079 | DOI | MR
[14] Audenaert K., Eisert J., Plenio M. B., Werner R. F., “Entanglement properties of the harmonic chain”, Phys. Rev. A, 66 (2002), 042327, 14 pp., ages ; quant-ph/0205025 | DOI
[15] Gould M. D., Zhang R. B., “Classification of all star irreps of $\mathfrak{gl}(m|n)$”, J. Math. Phys., 31 (1990), 2552–2559 | DOI | MR | Zbl
[16] Ganchev A. Ch., Palev T. D., “A Lie superalgebraic interpretation of the para-Bose statistics”, J. Math. Phys., 21 (1980), 797–799 | DOI | MR | Zbl
[17] Lievens S., Stoilova N. I., Van der Jeugt J., “The paraboson Fock space and unitary irreducible representations of the Lie superalgebra $\mathfrak{osp}(1|2n)$”, Comm. Math. Phys., 281 (2008), 805–826 ; arXiv:0706.4196 | DOI | MR | Zbl
[18] King R. C., Stoilova N. I., Van der Jeugt J., “Representations of the Lie superalgebra $\mathfrak{gl}(1|n)$ in a Gelfand–Zetlin basis and Wigner quantum oscillators”, J. Phys. A: Math. Gen., 39 (2006), 5763–5785 ; hep-th/0602169 | DOI | MR | Zbl
[19] Macdonald I. G., Symmetric functions and Hall polynomials, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR | Zbl
[20] Wybourne B. G., Symmetry principles and atomic spectroscopy, Wiley, New York, 1970 | MR
[21] Palev T. D., $\mathfrak{sl}(3|N)$ Wigner quantum oscillators: examples of ferromagnetic-like oscillators with noncommutative, square-commutative geometry, hep-th/0601201