@article{SIGMA_2009_5_a104,
author = {Alexander Zuevsky},
title = {Noncommutative {Root} {Space} {Witt,} {Ricci} {Flow,} and {Poisson} {Bracket} {Continual} {Lie} {Algebras}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a104/}
}
TY - JOUR AU - Alexander Zuevsky TI - Noncommutative Root Space Witt, Ricci Flow, and Poisson Bracket Continual Lie Algebras JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a104/ LA - en ID - SIGMA_2009_5_a104 ER -
Alexander Zuevsky. Noncommutative Root Space Witt, Ricci Flow, and Poisson Bracket Continual Lie Algebras. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a104/
[1] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass. – London – Don Mills, Ont., 1969 | MR | Zbl
[2] Bakas I., Geometric flows and (some of) their physical applications, hep-th/0511057
[3] Bakas I., “The algebraic structure of geometric flows in two dimensions”, J. High Energy Phys., 2005:10 (2005), 038, 52 pp., ages ; hep-th/0507284 | DOI | MR
[4] Bakas I., “Ricci flows and their integrability in two dimensions”, C. R. Phys., 6 (2005), 175–184 ; hep-th/0410093 | DOI | MR
[5] Berenstein A., Retakh V., “Lie algebras and Lie groups over noncommutative rings”, Adv. Math., 218 (2008), 1723–1758 ; math.QA/0701399 | DOI | MR | Zbl
[6] Devchand Ch., Saveliev M. V., “Comultiplication for quantum deformations of the centreless Virasoro algebra in the continuum formulation”, Phys. Lett. B, 258 (1991), 364–368 | DOI | MR
[7] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization. I. Deformation of symplectic structures”, Ann. Physics, 111 (1978), 61–110 | DOI | MR | Zbl
[8] Dimakis A., Müller-Hoissen F., “Bicomplexes and integrable models”, J. Phys. A: Math. Gen., 33 (2000), 6579–6591 ; ; Dimakis A., Müller-Hoissen F., “Bicomplexes, integrable models, and noncommutative geometry”, Internat. J. Modern Phys. B, 14 (2000), 2455–2460 ; nlin.SI/0006029hep-th/0006005 | DOI | MR | Zbl | DOI | MR | Zbl
[9] Grisaru M. T., Penati S., “An integrable noncommutative version of the sine-Gordon system”, Nuclear Phys. B, 655 (2003), 250–276 ; hep-th/0112246 | DOI | MR | Zbl
[10] Hamanaka M., Toda K., “Towards noncommutative integrable systems”, Phys. Lett. A, 316 (2003), 77–83 ; hep-th/0211148 | DOI | MR | Zbl
[11] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | MR
[12] Kashaev R. M., Saveliev M. V., Savelieva S. A., Vershik A. M., “On nonlinear equations associated with Lie algebras of diffeomorphism groups of two-dimensional manifolds”, Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (Oslo, 1988), eds. S. Albeverio, J. E. Fenstad, H. Holden and T. Lindstrom, Cambridge University Press, Cambridge, 1992, 295–307 | MR
[13] Leznov A. N., Saveliev M. V., Group-theoretical methods for integration of nonlinear dynamical systems, Progress in Physics, 15, Birkhäuser Verlag, Basel, 1992 | MR | Zbl
[14] Reshetikhin N. Yu., Semenov-Tian-Shansky M. A., “Central extensions of quantum current groups”, Lett. Math. Phys., 19 (1990), 133–142 | DOI | MR | Zbl
[15] Saveliev M. V., On an equation associated with the contact Lie algebras, hep-th/9311035
[16] Saveliev M. V., “A nonlinear dynamical system related to the contact Lie algebras”, J. Math. Sci., 82 (1996), 3832–3833 | DOI | MR | Zbl
[17] Saveliev M. V., “Integro-differential nonlinear equations and continual Lie algebras”, Comm. Math. Phys., 121 (1989), 283–290 | DOI | MR | Zbl
[18] Saveliev M. V., Vershik A. M., “Continuum analogues of contragredient Lie algebras (Lie algebras with a Cartan operator and nonlinear dynamical systems)”, Comm. Math. Phys., 126 (1989), 367–378 | DOI | MR | Zbl
[19] Saveliev M. V., Vershik A. M., “New examples of continuum graded Lie algebras”, Phys. Lett. A, 143 (1990), 121–128 | DOI | MR
[20] Saveliev M. V., Zuevsky A. B., “Quantum vertex operators for the sine-Gordon model”, Internat. J. Modern Phys. A, 15 (2000), 3877–3897 | MR | Zbl
[21] Seiberg N., Witten E., “String theory and noncommutative geometry”, J. High Energy Phys., 1999:09 (1999), 032, 93 pp., ages ; ; Douglas M. R., Nekrasov N. A., “Noncommutative field theory”, Rev. Modern Phys., 73 (2001), 977–1029 ; hep-th/9908142hep-th/0106048 | DOI | MR | Zbl | DOI | MR
[22] Zuevsky A., “Continual Lie algebra bicomplexes and integrable models”, Czechoslovak J. Phys., 55 (2005), 1545–1551 | DOI | MR
[23] Zuevsky A., “Continual Lie algebras and noncommutative counterparts of exactly solvable models”, J. Phys. A: Math. Gen., 37 (2004), 537–547 | DOI | MR | Zbl
[24] Zuevsky A., “Non-commutative Ricci and Calabi flows”, Ann. Henri Poincaré, 7 (2006), 1569–1578 | DOI | MR | Zbl