@article{SIGMA_2009_5_a103,
author = {Ryu Sasaki and Wen-Li Yang and Yao-Zhong Zhang},
title = {Bethe {Ansatz} {Solutions} to {Quasi} {Exactly} {Solvable} {Difference} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a103/}
}
TY - JOUR AU - Ryu Sasaki AU - Wen-Li Yang AU - Yao-Zhong Zhang TI - Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2009 VL - 5 UR - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a103/ LA - en ID - SIGMA_2009_5_a103 ER -
Ryu Sasaki; Wen-Li Yang; Yao-Zhong Zhang. Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a103/
[1] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 ; Cooper F., Khare A., Sukhatme U., “Supersymmetry and quantum mechanics”, Phys. Rep., 251 (1995), 267–385 ; hep-th/9405029 | DOI | MR | Zbl | DOI | MR
[2] Odake S., Sasaki R., “Shape invariant potentials in “discrete quantum mechanics””, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 507–521 ; hep-th/0410102 | DOI | MR
[3] Odake S., Sasaki R., “Equilibrium positions, shape invariance and Askey–Wilson polynomials”, J. Math. Phys., 46 (2005), 063513, 10 pp., ages ; ; Odake S., Sasaki R., “Calogero–Sutherland–Moser systems, Ruijsenaars–Schneider–van Diejen systems and orthogonal polynomials”, Prog. Theoret. Phys., 114 (2005), 1245–1260 ; ; Odake S., Sasaki R., “Equilibrium positions and eigenfunctions of shape invariant (“discrete”) quantum mechanics”, Rokko Lectures in Mathematics (Kobe University), 18 (2005), 85–110; hep-th/0410109hep-th/0512155hep-th/0505070 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Odake S., Sasaki R., “Unified theory of annihilation-creation operators for solvable (“discrete”) quantum mechanics”, J. Math. Phys., 47 (2006), 102102, 33 pp., ages ; ; Odake S., Sasaki R., “Exact solution in the Heisenberg picture and annihilation-creation operators”, Phys. Lett. B, 641 (2006), 112–117 ; quant-ph/0605215quant-ph/0605221 | DOI | MR | Zbl | DOI | MR
[5] Odake S., Sasaki R., “Exact Heisenberg operator solutions for multi-particle quantum mechanics”, J. Math. Phys., 48 (2007), 082106, 12 pp., ages ; arXiv:0706.0768 | DOI | MR | Zbl
[6] Odake S., Sasaki R., “Exactly solvable “discrete” quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states”, Prog. Theoret. Phys., 119 (2008), 663–700 ; arXiv:0802.1075 | DOI | Zbl
[7] Odake S., Sasaki R., “Orthogonal polynomials from Hermitian matrices”, J. Math. Phys., 49 (2008), 053503, 43 pp., ages ; arXiv:0712.4106 | DOI | MR | Zbl
[8] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999 | MR | Zbl
[9] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, math.CA/9602214
[10] Sasaki R., “Quasi exactly solvable difference equations”, J. Math. Phys., 48 (2007), 122104, 11 pp., ages ; arXiv:0708.0702 | DOI | MR | Zbl
[11] Sasaki R., “New quasi exactly solvable difference equation”, J. Nonlinear Math. Phys., 15, suppl. 3 (2008), 373–384 ; arXiv:0712.2616 | DOI | MR
[12] Ushveridze A. G., Quasi-exactly solvable models in quantum mechanics, Institute of Physics Publishing, Bristol, 1994 ; Morozov A. Y., Perelomov A. M., Roslyi A. A., Shifman M. A., Turbiner A. V., “Quasi-exactly-solvable quantal problems: one-dimensional analog of rational conformal field theories”, Internat. J. Modern Phys. A, 5 (1990), 803–832 | MR | Zbl | DOI | MR | Zbl
[13] Turbiner A. V., “Quasi-exactly-solvable problems and $\mathrm{sl}(2)$ algebra”, Comm. Math. Phys., 118 (1988), 467–474 | DOI | MR | Zbl
[14] Andrianov A. A., Ioffe M. V., Spiridonov V. P., “Higher-derivative supersymmetry and the Witten index”, Phys. Lett. A, 174 (1993), 273–279 ; ; Bagrov V. G., Samsonov B. F., “Darboux transformation, factorization and supersymmetry in one-dimensional quantum mechanics”, Theoret. and Math. Phys., 104 (1995), 1051–1060 ; Klishevich S. M., Plyushchay M. S., “Supersymmetry of parafermions”, Modern Phys. Lett. A, 14 (1999), 2739–2752 ; ; Aoyama H., Kikuchi H., Okouchi I., Sato M., Wada S., “Valley views: instantons, large order behaviors, and supersymmetry”, Nuclear Phys. B, 553 (1999), 644–710 ; hep-th/9303005hep-th/9905149hep-th/9808034 | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[15] Sasaki R., Takasaki K., “Quantum Inozemtsev model, quasi-exact solvability and $\mathcal N$-fold supersymmetry”, J. Phys. A: Math. Gen., 34 (2001), 9533–9553 ; Corrigendum J. Phys. A: Math. Gen., 34 (2001), 10335 ; hep-th/0109008 | DOI | MR | Zbl | DOI | Zbl
[16] Odake S., Sasaki R., “Multi-particle quasi exactly solvable difference equations”, J. Math. Phys., 48 (2007), 122105, 8 pp., ages ; arXiv:0708.0716 | DOI | MR | Zbl
[17] Wiegmann P. B., Zabrodin A. V., “Bethe-ansatz for Bloch electron in magnetic field”, Phys. Rev. Lett., 72 (1994), 1890–1893 ; Wiegmann P. B., Zabrodin A. V., “Algebraization of difference eigenvalue equations related to $U_q(\mathrm{sl}_2)$”, Nuclear Phys. B, 451 (1995), 699–724 ; cond-mat/9501129 | DOI | MR | DOI | MR | Zbl
[18] Felder G., Varchenko A., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}(sl_2)$”, Nuclear Phys. B, 480 (1996), 485–503 ; q-alg/9605024 | DOI | MR | Zbl
[19] Hou B. Y., Sasaki R., Yang W.-L., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}({\rm sl}_n)$ and its applications”, Nuclear Phys. B, 663 (2003), 467–486 ; ; Hou B. Y., Sasaki R., Yang W.-L., “Eigenvalues of Ruijsenaars–Schneider model associated with $A_{n-1}$ root system in Bethe ansatz formalism”, J. Math. Phys., 45 (2004), 559–575 ; hep-th/0303077hep-th/0309194 | DOI | MR | Zbl | DOI | MR | Zbl
[20] Manojlovic N., Nagy Z., “Construction of the Bethe state for the $E_{\tau,\eta}(\mathrm{so}(3))$ elliptic quantum group”, SIGMA, 3 (2007), 004, 10 pp., ages ; ; Manojlovic N., Nagy Z., “Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau,\eta}(A_2^{(2)})$”, J. Math. Phys., 48 (2007), 123515, 11 pp., ages ; math.QA/0612086arXiv:0704.3032 | MR | DOI | MR | Zbl
[21] Degasperis A., Ruijsenaars S. N. M., “Newton-equivalent Hamiltonians for the harmonic oscillator”, Ann. Physics, 293 (2001), 92–109 | DOI | MR | Zbl
[22] Turbiner A. V., “Quantum mechanics: problems intermediate between exactly solvable and completely unsolvable”, Soviet Phys. JETP, 67 (1988), 230–236 ; Gonzárez-López A., Kamran N., Olver P., “Normalizability of one-dimensional quasi-exactly solvable Schrödinger operators”, Comm. Math. Phys., 153 (1993), 117–146 | MR | DOI | MR
[23] Smirnov Y., Turbiner A., “Lie algebraic discretization of differential equations”, Modern Phys. Lett. A, 10 (1995), 1795–1802 ; ; Chrissomalakos C., Turbiner A., “Canonical commutation relation preserving maps”, J. Phys. A: Math. Gen., 34 (2001), 10475–10485 ; funct-an/9501001math-ph/0104004 | DOI | MR | Zbl | DOI | MR
[24] Odake S., Sasaki R., Unified theory of exactly and quasi-exactly solvable “discrete” quantum mechanics. I. Formalism, arXiv:0903.2604