@article{SIGMA_2009_5_a102,
author = {Jose Miguel Martins Veloso},
title = {Isomorphism of {Intransitive} {Linear} {Lie} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a102/}
}
Jose Miguel Martins Veloso. Isomorphism of Intransitive Linear Lie Equations. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a102/
[1] Cartan É.,, “Sur le structure des groupes infinis de transformations”, Ann. Sci. École Norm. Sup. (3), 21 (1904), 153–206 ; Cartan É., “Sur la structure des groupes infinis de transformation (suite)”, Ann. Sci. École Norm. Sup. (3), 22 (1905), 219–308 | MR | Zbl | MR | Zbl
[2] Conn J. F., “A new class of counterexamples to the integrability problem”, Proc. Nat. Acad. Sci. USA, 74 (1977), 2655–2658 | DOI | MR | Zbl
[3] Frölicher A., Nijenhuis A.,, “Theory of vector valued differential forms. I. Derivations in the graded ring of differential forms”, Nederl. Akad. Wet. Proc. Ser. A, 59 (1956), 338–359 | MR | Zbl
[4] Goldschmidt H., “Existence theorems for analytic linear partial differential equations”, Ann. of Math. (2), 86 (1967), 246–270 | DOI | MR | Zbl
[5] Goldschmidt H., “Integrability criteria for systems of non-linear partial differential equations”, J. Differential Geom., 1 (1967), 269–307 | MR | Zbl
[6] Goldschmidt H., “Sur la structure des équations de Lie. I. Le troisième théorème fondamental”, J. Differential Geom., 6 (1972), 357–373 | MR | Zbl
[7] Goldschmidt H., “Sur la structure des équations de Lie. II. Équations formellement transitives”, J. Differential Geom., 7 (1972), 67–95 | MR | Zbl
[8] Goldschmidt H., “Sur la structure des équations de Lie. III. La cohomologie de Spencer”, J. Differential Geom., 11 (1976), 167–223 | MR | Zbl
[9] Goldschmidt H., Spencer D., “On the non-linear cohomology of Lie equations. I”, Acta Math., 136 (1976), 103–170 | DOI | MR | Zbl
[10] Guillemin V. W., Sternberg S., “An algebraic model of transitive differential geometry”, Bull. Amer. Math. Soc., 70 (1964), 16–47 | DOI | MR | Zbl
[11] Guillemin V. W., Sternberg S., “The Lewy counterexample and the local equivalence problem for $G$-structures”, J. Differential Geom., 1 (1967), 127–131 | MR | Zbl
[12] Kiso K., “Local properties of intransitive infinite Lie algebra sheaves”, Japan. J. Math. (N.S.), 5 (1979), 101–155 | MR | Zbl
[13] Kiso K., “Infinitesimal automorphisms of $G$-structures and certain intransitive infinite Lie algebra sheaves”, Hokkaido Math. J., 11 (1982), 301–327 | MR | Zbl
[14] Kumpera A., Spencer D. C., Lie equations, Vol. I, General theory, Annals of Mathematics Studies, 73, Princeton University Press, University of Tokyo Press, Princeton, N.J. – Tokyo, 1972 | MR | Zbl
[15] Kamber F. W., Tondeur P., Foliated bundles and characteristic classes, Lecture Notes in Mathematics, 493, Springer-Verlag, Berlin – New York, 1975 | MR | Zbl
[16] Malgrange B., “Equations de Lie. I”, J. Differential Geom., 6 (1972), 503–522 | MR | Zbl
[17] Malgrange B., “Equations de Lie. II”, J. Differential Geom., 7 (1972), 117–141 | MR | Zbl
[18] Morimoto T., “On the intransitive Lie algebras whose transitive parts are infinite and primitive”, J. Math. Soc. of Japan, 29 (1977), 35–65 | DOI | MR | Zbl
[19] Ngô Van Quê V. V. T., “Définition des pseudogroupes infinitesimaux de Lie intransitifs. Théorème fondamental de réalization en dimension deux”, Nagoya Math. J., 86 (1982), 211–228 | MR | Zbl
[20] Petitjean A., Rodrigues A. M., “Correspondance entre algébres de Lie abstraites et pseudo-groupes de Lie transitifs”, Ann. of Math. (2), 101 (1975), 268–279 | DOI | MR | Zbl
[21] Ruiz C., “Prolongement formel des systèmes différentiels extérieur d'ordre supérieur”, C. R. Acad. Sci. Paris Sér. A-B, 285 (1977), A1077–A1080 | MR
[22] Ruiz C., “Complexe de Koszul du symbole d'un système différentiel extérieur”, C. R. Acad. Sci. Paris Sér. A-B, 286 (1978), A55–A58 | MR
[23] Ruiz C., “Propriétès de dualité du prolongement formel des systèmes différentiels extérieurs”, C. R. Acad. Sci. Paris Sér. A-B, 286 (1978), A99–A101 | MR
[24] Singer I. M., Sternberg S., “The infinite groups of Lie and Cartan. I. The transitive groups”, J. Analyse Math., 15 (1965), 1–114 | DOI | MR | Zbl
[25] Veloso J. M. M., “Lie's third theorem for intransitive Lie equations”, J. Differential Geom., 32 (1990), 185–198 | MR | Zbl
[26] Veloso J. M., “Prolongation projection commutativity theorem”, CR-Geometry and Overdetermined Systems (Osaka, 1994), Adv. Stud. Pure Math., 25, Math. Soc. Japan, Tokyo, 1997, 386–405 | MR | Zbl
[27] Veloso J. M. M., “New classes of intransitive simple Lie pseudogroups”, Bull. Soc. Sci. Lett. Lodz, 36:19 (1986), 7 p. | Zbl