On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
Symmetry, integrability and geometry: methods and applications, Tome 5 (2009) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The particular case of the integrable two component (2+1)-dimensional hydrodynamical type systems, which generalises the so-called Hamiltonian subcase, is considered. The associated system in involution is integrated in a parametric form. A dispersionless Lax formulation is found.
Keywords: hydrodynamic-type system; dispersionless Lax representation.
@article{SIGMA_2009_5_a10,
     author = {Maxim V. Pavlov and Ziemowit Popowicz},
     title = {On {Integrability} of {a~Special} {Class} of {Two-Component} {(2+1)-Dimensional} {Hydrodynamic-Type} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2009},
     volume = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a10/}
}
TY  - JOUR
AU  - Maxim V. Pavlov
AU  - Ziemowit Popowicz
TI  - On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2009
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a10/
LA  - en
ID  - SIGMA_2009_5_a10
ER  - 
%0 Journal Article
%A Maxim V. Pavlov
%A Ziemowit Popowicz
%T On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2009
%V 5
%U http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a10/
%G en
%F SIGMA_2009_5_a10
Maxim V. Pavlov; Ziemowit Popowicz. On Integrability of a Special Class of Two-Component (2+1)-Dimensional Hydrodynamic-Type Systems. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a10/

[1] Ferapontov E. V., Khusnutdinova K. R., “On the integrability of (2+1)-dimensional quasilinear systems”, Comm. Math. Phys., 248 (2004), 187–206 ; nlin.SI/0305044 | DOI | MR | Zbl

[2] Ferapontov E. V., Khusnutdinova K. R., “The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type”, J. Phys. A: Math. Gen., 37 (2004), 2949–2963 ; nlin.SI/0310021 | DOI | MR | Zbl

[3] Ferapontov E. V., Marshall D. G., “Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor”, Math. Ann., 339 (2007), 61–99 ; nlin.SI/0505013 | DOI | MR | Zbl

[4] Ferapontov E. V., Moro A., Sokolov V. V., “Hamiltonian systems of hydrodynamic type in 2+1 dimensions”, Comm. Math. Phys., 285 (2009), 31–65 ; arXiv:0710.2012 | DOI | MR

[5] Odesskii A., Sokolov V., Integrable pseudopotentials related to generalized hypergeometric functions, arXiv:0803.0086

[6] Odesskii A., Pavlov M. V., Sokolov V. V., “A classification of integrable Vlasov-like equations”, Theoret. and Math. Phys., 154 (2008), 209–219 ; arXiv:0710.5655 | DOI | MR

[7] Zakharov V. E., “Dispersionless limit of integrable systems in 2+1 dimensions”, Singular Limits of Dispersive Waves (Lyon, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 320, eds. N. M. Ercolani et al., Plenum, New York, 1994, 165–174 | MR | Zbl