@article{SIGMA_2009_5_a0,
author = {Miloslav Znojil},
title = {Three-Hilbert-Space {Formulation} of {Quantum} {Mechanics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2009},
volume = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a0/}
}
Miloslav Znojil. Three-Hilbert-Space Formulation of Quantum Mechanics. Symmetry, integrability and geometry: methods and applications, Tome 5 (2009). http://geodesic.mathdoc.fr/item/SIGMA_2009_5_a0/
[1] Styer D. F. et al., “Nine formulations of quantum mechanics”, Amer. J. Phys., 70 (2002), 288–297 | DOI | MR
[2] Bender C. M., Boettcher S., “Real spectra in non-Hermitian Hamiltonians having $PT$ symmetry”, Phys. Rev. Lett., 80 (1998), 5243–5246 ; ; Bender C. M., Boettcher S., Meisinger P. M., “$PT$-symmetric quantum mechanics”, J. Math. Phys., 40 (1999), 2201–2229 ; physics/9712001quant-ph/9809072 | DOI | MR | Zbl | DOI | MR | Zbl
[3] Messiah A., Quantum mechanics, Vols. 1, 2, North Holland, Amsterdam, 1961
[4] http://gemma.ujf.cas.cz/~znojil/conf/index.html
[5] M. Znojil (ed.), Czech. J. Phys., 54:1 (2004), Proceedings of the Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics”(Prague, June 2003) ; M. Znojil (ed.), Czech. J. Phys., 54:10 (2004), Proceedings of the Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics” II (Prague, June 2004) ; M. Znojil (ed.), Czech. J. Phys., 55:9 (2005), Proceedings of the Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics III”(Istanbul, June 2005) ; H. Geyer, D. Heiss and M. Znojil (eds.), J. Phys. A: Math. Gen., 39:32 (2006), Proceedings of the Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics IV” (Stellenbosch, November 2005) | DOI | MR | DOI | MR | MR | Zbl | DOI | MR
[6] Bender C. M., “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70 (2007), 947–1018 ; hep-th/0703096 | DOI | MR
[7] Scholtz F. G., Geyer H. B., Hahne F. J. W., “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Physics, 213 (1992), 74–101 | DOI | MR | Zbl
[8] Dieudonne J., “Quasi-Hermitian operators”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Pergamon, Oxford, 1961, 115–122 ; Williams J. P., “Operators similar to their adjoints”, Proc. Amer. Math. Soc., 20 (1969), 121–123 | MR | DOI | MR | Zbl
[9] Znojil M., “Time-dependent version of cryptohermitian quantum theory”, Phys. Rev. D, 78 (2008), 085003, 5 pp., ages ; arXiv:0809.2874 | DOI | MR
[10] Bender C. M., Turbiner A., “Analytic continuation of eigenvalue problems”, Phys. Lett. A, 173 (1993), 442–446 ; Günther U., Stefani F., Znojil M., “MHD $\alpha^2$-dynamo, squire equation and $PT$-symmetric interpolation between square well and harmonic oscillator”, J. Math. Phys., 46 (2005), 063504, 22 pp., ages ; ; Jakubský V., “Thermodynamics of pseudo-Hermitian systems in equilibrium”, Modern Phys. Lett. A, 22 (2007), 1075–1084 ; ; Mostafazadeh A., Loran F., “Propagation of electromagnetic waves in linear media and pseudo-Hermiticity”, Europhys. Lett. EPL, 81 (2008), 10007, 6 pp., ages ; math-ph/0501069quant-ph/0703092physics/0703080 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR
[11] Mostafazadeh A., “Hilbert space structures on the solution space of Klein–Gordon type evolution equations”, Classical Quantum Gravity, 20 (2003), 155–172 ; math-ph/0209014 | DOI | MR
[12] Feshbach H., Villars F., “Elementary relativistic wave mechanics of spin 0 and spin 1/2 particles”, Rev. Mod. Phys., 30 (1958), 24–45 | DOI | MR | Zbl
[13] Jakubský V., Smejkal J., “A positive-definite scalar product for free proca particle”, Czech. J. Phys., 56 (2006), 985–997 ; ; Smejkal J., Jakubský V., Znojil M., “Relativistic vector bosons and $PT$-symmetry”, J. Phys. Stud., 11 (2007), 45–54 ; ; Zamani F., Mostafazadeh A., Quantum mechanics of Proca fields, hep-th/0610290hep-th/0611287arXiv:0805.1651 | DOI | Zbl | MR | MR
[14] Bender C. M., Brody D. C., Jones H. F., “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89 (2002), 270402, 4 pp., ages ; Erratum Phys. Rev. Lett., 92 (2004), 119902 ; quant-ph/0208076 | DOI | MR | DOI | MR
[15] Mostafazadeh A., “Pseudo-Hermiticity versus $PT$ symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43 (2002), 205–214 ; ; Mostafazadeh A., “Pseudo-hermiticity versus $PT$-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum”, J. Math. Phys., 43 (2002), 2814–2816 ; ; Mostafazadeh A., Pseudo-Hermitian quantum mechanics, math-ph/0107001math-ph/0110016arXiv:0810.5643 | DOI | MR | Zbl | DOI | MR | Zbl
[16] Znojil M., “Quantum knots”, Phys. Lett. A, 372 (2008), 3591–3596 ; ; Znojil M., “Identification of observables in quantum toboggans”, J. Phys. A: Math. Theor., 41 (2008), 215304, 14 pp., ages ; arXiv:0802.1318arXiv:0803.0403 | DOI | MR | DOI | MR | Zbl
[17] Znojil M., “On the role of the normalization factors $\kappa_n$ and of the pseudo-metric $P\neq P^\dagger$ in crypto-Hermitian quantum models”, SIGMA, 4 (2008), 001, 9 pp., ages ; arXiv:0710.4432 | MR | Zbl
[18] Cannata F., Dedonder J.-P., Ventura A., “Scattering in $PT$-symmetric quantum mechanics”, Ann. Physics, 322 (2007), 397–433 ; quant-ph/0606129 | DOI | MR | Zbl
[19] Jones H. F., “Scattering from localized non-Hermitian potentials”, Phys. Rev. D, 76 (2007), 125003, 5 pp., ages ; ; Znojil M., “Scattering theory with localized non-Hermiticites”, Phys. Rev. D, 78 (2008), 025026 ; ; Znojil M., “Discrete $PT$-symmetric models of scattering”, J. Phys. A: Math. Theor., 41 (2008), 292002, 9 pp., ages ; arXiv:0707.3031arXiv:0805.2800arXiv:0806.2019 | DOI | DOI | MR | DOI | MR | Zbl
[20] Mostafazadeh A., “Time-dependent pseudo-Hermitian Hamiltonians defining a unitary quantum system and uniqueness of the metric”, Phys. Lett. B, 650 (2007), 208–212 ; arXiv:0706.1872 | DOI | MR
[21] Znojil M., Which operator generates time evolution in quantum mechanics?, arXiv:0711.0535
[22] Figueira de Morisson Faria C., Fring A., “Time evolution of non-Hermitian Hamiltonian systems”, J. Phys. A: Math. Gen., 39 (2006), 9269–9289 ; quant-ph/0604014 | DOI | MR | Zbl
[23] Bender C. M., Wu T. T., “Anharmonic oscillator”, Phys. Rev., 184 (1969), 1231–1260 | DOI | MR
[24] Sibuya Y., Global theory of second order linear differential equation with polynomial coefficient, North Holland, Amsterdam, 1975 ; Dorey P., Dunning C., Tateo R., “Spectral equivalences, Bethe ansatz equations, and reality properties in $PT$-symmetric quantum mechanics”, J. Phys. A: Math. Gen., 34 (2001), 5679–5704 ; ; Dorey P., Dunning C., Tateo R., “Supersymmetry and the spontaneous breakdown of $PT$ symmetry”, J. Phys. A: Math. Gen., 34 (2001), L391–L400 ; ; Dorey P., Dunning C., Tateo R., “The ODE/IM correspondence”, J. Phys. A: Math. Theor., 40 (2007), R205–R283 ; hep-th/0103051hep-th/0104119hep-th/0703066 | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[25] Caliceti E., Graffi S., Maioli M., “Perturbation theory of odd anharmonic oscillators”, Comm. Math. Phys., 75 (1980), 51–66 ; Buslaev V., Grecchi V., “Equivalence of unstable anharmonic oscillators and double wells”, J. Phys. A: Math. Gen., 26 (1993), 5541–5549 ; Fernández F. M., Guardiola R., Ros J., Znojil M., “Strong-coupling expansions for the $PT$-symmetric oscillators $V(r)=a i x+b(ix)^2+c(ix)^3$”, J. Phys. A: Math. Gen., 31 (1998), 10105–10112 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl