Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A conformal description of Poincaré–Einstein manifolds is developed: these structures are seen to be a special case of a natural weakening of the Einstein condition termed an almost Einstein structure. This is used for two purposes: to shed light on the relationship between the scattering construction of Graham–Zworski and the higher order conformal Dirichlet–Neumann maps of Branson and the author; to sketch a new construction of non-local (Dirichlet–to–Neumann type) conformal operators between tensor bundles.
Keywords: conformal differential geometry; Dirichlet–to–Neumann maps.
@article{SIGMA_2007_3_a99,
     author = {A. Rod Gover},
     title = {Conformal {Dirichlet{\textendash}Neumann} {Maps} and {Poincar\'e{\textendash}Einstein} {Manifolds}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a99/}
}
TY  - JOUR
AU  - A. Rod Gover
TI  - Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a99/
LA  - en
ID  - SIGMA_2007_3_a99
ER  - 
%0 Journal Article
%A A. Rod Gover
%T Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a99/
%G en
%F SIGMA_2007_3_a99
A. Rod Gover. Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a99/

[1] Albin P., Renormalizing curvature integrals on Poincaré–Einstein manifolds, math.DG/0504161 | MR

[2] Anderson M., “$L^2$ curvature and volume renormalization of AHE metrics on 4-manifolds”, Math. Res. Lett., 8 (2001), 171–188 ; math.DG/0011051 | MR | Zbl

[3] Armstrong S., Definite signature conformal holonomy: a complete classification, math.DG/0503388 | MR

[4] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl

[5] Branson T., “Sharp inequalities, the functional determinant, and the complementary series”, Trans. Amer. Math. Soc., 347 (1995), 3671–3742 | DOI | MR | Zbl

[6] Branson T., Gover A. R., “Conformally invariant non-local operators”, Pacific J. Math., 201 (2001), 19–60 | DOI | MR | Zbl

[7] Branson T., Gover A. R., “Conformally invariant operators, differential forms, cohomology and a generalisation of $Q$-curvature”, Comm. Partial Differential Equations, 30 (2005), 1611–1669 ; math.DG/0309085 | DOI | MR | Zbl

[8] Branson T., Ólafsson G., Ørsted B., “Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroup”, J. Funct. Anal., 135 (1996), 163–205 | DOI | MR | Zbl

[9] Cartan E., “Les espaces à connexion conforme”, Ann. Soc. Pol. Math., 2 (1923), 171–202

[10] Čap A., Gover A. R., “Tractor calculi for parabolic geometries”, Trans. Amer. Math. Soc., 354 (2002), 1511–1548 | DOI | MR | Zbl

[11] Čap A., Gover A. R., “Standard tractors and the conformal ambient metric construction”, Ann. Global Anal. Geom., 24 (2003), 231–295 ; math.DG/0207016 | DOI | MR

[12] Čap A., Soǔcek V., Curved Casimir operators and the BGG machinery, arXiv:0708.3180 | MR

[13] Čap A., Slovák J., Soǔcek V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math. (2), 154 (2001), 97–113 ; math.DG/0001164 | DOI | MR | Zbl

[14] Chang A., Qing J., Yang P., On the renormalized volumes for conformally compact Einstein manifolds, math.DG/0512376

[15] Cherrier P., “Problèmes de Neumann non linéaires sur les variétés riemanniennes”, J. Funct. Anal., 57 (1984), 154–206 | DOI | MR | Zbl

[16] Derdzinski A., Maschler G., “Special Kähler–Ricci potentials on compact Kähler manifolds”, J. Reine Angew. Math., 593 (2006), 73–116 ; math.DG/0204328 | MR | Zbl

[17] Eastwood M. G., “Notes on conformal differential geometry”, The Proceedings of the 15th Winter School “Geometry and Physics” (Srni, 1995), Rend. Circ. Mat. Palermo (2), Suppl. no. 43, 1996, 57–76 | MR

[18] Eastwood M. G., Rice J., “Conformally invariant differential operators on Minkowski space and their curved analogues”, Comm. Math. Phys., 109 (1987), 207–228 ; Erratum Comm. Math. Phys., 144 (1992), 213 | DOI | MR | Zbl | DOI | MR | Zbl

[19] Fefferman C., Graham C. R., The ambient metric, arXiv:0710.0919

[20] Gover A. R., “Aspects of parabolic invariant theory”, The 18th Winter School “Geometry and Physics” (Srní, 1998), Rend. Circ. Mat. Palermo (2), Suppl. no. 59, 1999, 25–47 | MR

[21] Gover A. R., “Almost conformally Einstein manifolds and obstructions”, Proceedings of the 9th International Conference “Differential Geometry and Its Applications” (Matfyzpress, Prague, 2005), 2005, 247–260 ; math.DG/0412393 | MR | Zbl

[22] Gover A. R., “Laplacian operators and $Q$-curvature on conformally Einstein manifolds”, Math. Ann., 336 (2006), 311–334 ; math.DG/0506037 | DOI | MR | Zbl

[23] Gover A. R., Nurowski P., “Obstructions to conformally Einstein metrics in $n$ dimensions”, J. Geom. Phys., 56 (2006), 450–484 ; math.DG/0405304 | DOI | MR | Zbl

[24] Gover A. R., Peterson L., “Conformally invariant powers of the Laplacian, $Q$-curvature, and tractor calculus”, Comm. Math. Phys., 235 (2003), 339–378 ; math-ph/0201030 | DOI | MR | Zbl

[25] Gover A. R., Almost Einstein manifolds in Riemannian signature, in preparation

[26] Gover A. R., Šilhan J., Commuting linear operators and decompositions; applications to Einstein manifolds, math.AC/0701377

[27] Gover A. R., Šilhan J., Conformal operators on forms and detour complexes on Einstein manifolds, arXiv:0708.3854 | MR

[28] Gover A. R., Šilhan J., “The conformal Killing equation on forms-prolongations and applications”, Differential Geom. Appl., 26:3 (2008), 244–266 ; math.DG/0601751 | DOI | MR | Zbl

[29] Gover A. R., Somberg P., Souček V., “Yang–Mills detour complexes and conformal geometry”, Comm. Math. Phys., 278:2 (2008), 307–327 ; math.DG/0606401 | DOI | MR | Zbl

[30] Graham C. R., “Volume and area renormalizations for conformally compact Einstein metrics”, The Proceedings of the 19th Winter School “Geometry and Physics” (Srní, 1999), Rend. Circ. Mat. Palermo (2), Suppl. no. 63, 2000, 31–42 | MR

[31] Graham C. R., “Dirichlet–to–Neumann map for Poincaré–Einstein metrics”, Oberwolfach Reports, 2 (2005), 2200–2203

[32] Graham C. R., Jenne R., Mason L. J., Sparling G. A., “Conformally invariant powers of the Laplacian. I. Existence”, J. London Math. Soc., 46 (1992), 557–565 | DOI | MR | Zbl

[33] Graham C. R., Lee J. M., “Einstein metrics with prescribed conformal infinity on the ball”, Adv. Math., 87 (1991), 186–225 | DOI | MR | Zbl

[34] Graham C. R., Zworski M., “Scattering matrix in conformal geometry”, Invent. Math., 152 (2003), 89–118 ; math.DG/0109089 | DOI | MR | Zbl

[35] Grubb G., Functional calculus of pseudodifferential boundary problems, 2nd ed., Birkhäuser, Boston, 1996 | MR

[36] Guillarmou C., “Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds”, Duke Math. J., 129 (2005), 1–37 ; math.SP/0311424 | DOI | MR | Zbl

[37] Guillarmou C., Guillopé L., The determinant of the Dirichlet–to–Neumann map for surfaces with boundary, math.SP/0701727 | MR

[38] Hörmander L., The analysis of linear partial differential operators, III, Springer-Verlag, Berlin, 1985 | MR

[39] Joshi M., Sá Barreto A., “Inverse scattering on asymptotically hyperbolic manifolds”, Acta Math., 184 (2000), 41–86 ; math.SP/9811118 | DOI | MR | Zbl

[40] Kumano-go H., Pseudo-differential operators, MIT Press, Cambridge, 1974

[41] Maldacena J., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252 ; hep-th/9711200 | MR | Zbl

[42] Mazzeo R., “The Hodge cohomology of a conformally compact metric”, J. Differential Geom., 28 (1988), 309–339 | MR | Zbl

[43] Mazzeo R., “Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds”, Amer. J. Math., 113 (1991), 25–45 | DOI | MR | Zbl

[44] Mazzeo R., Melrose R., “Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature”, J. Funct. Anal., 75 (1987), 260–310 | DOI | MR | Zbl

[45] Perry P., “The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix”, J. Reine Angew. Math., 398 (1989), 67–91 | MR | Zbl

[46] Sasaki S., “On the spaces with normal conformal connexions whose groups of holonomy fix a point or a hypersphere II”, Japan J. Math., 18 (1943), 623–633 | MR | Zbl

[47] Šilhan J., Invariant operators in conformal geometry, PhD thesis, University of Auckland, 2006

[48] Thomas T. Y., “On conformal geometry”, Proc. Natl. Acad. Sci. USA, 12 (1926), 352–359 | DOI | Zbl

[49] Witten E., “Anti de Sitter space and holography”, Adv. Theor. Math. Phys., 2 (1998), 253–291 ; hep-th/9802150 | MR | Zbl