@article{SIGMA_2007_3_a98,
author = {Salah Boukraa and Saoud Hassani and Jean-Marie Maillard and Nadjah Zenine},
title = {From {Holonomy} of the {Ising} {Model} {Form} {Factors} to $n${-Fold} {Integrals} and the {Theory} of {Elliptic} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a98/}
}
TY - JOUR AU - Salah Boukraa AU - Saoud Hassani AU - Jean-Marie Maillard AU - Nadjah Zenine TI - From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a98/ LA - en ID - SIGMA_2007_3_a98 ER -
%0 Journal Article %A Salah Boukraa %A Saoud Hassani %A Jean-Marie Maillard %A Nadjah Zenine %T From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a98/ %G en %F SIGMA_2007_3_a98
Salah Boukraa; Saoud Hassani; Jean-Marie Maillard; Nadjah Zenine. From Holonomy of the Ising Model Form Factors to $n$-Fold Integrals and the Theory of Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a98/
[1] Adler A., Ramanan S., Moduli of Abelian varieties, Lecture Notes in Mathematics, 1644, Springer-Verlag, Heidelberg Berlin, 1996 | MR
[2] Au-Yang H., Perk J. H. H., “Correlation functions and susceptibility in the $Z$-invariant Ising model”, MathPhys Odyssee 2001: Integrable Models and Beyond,, eds. T. Miwa and M. Kashiwara, Birkhäuser, Boston, 2002, 23–48 | MR | Zbl
[3] Au-Yang H., Perk J. H. H., “Critical correlations in a $Z$-invariant inhomogeneous Ising model”, Phys. A, 144 (1987), 44–104 | DOI | MR
[4] Au-Yang H., Perk J. H. H., “Ising correlations at the critical temperature”, Phys. Lett. A, 104 (1984), 131–134, see equation (4) on page 3 | DOI | MR
[5] Au-Yang H., Perk J. H. H., “Star-triangle equations and identities in hypergeometric series”, Internat. J. Modern Phys. B, 16 (2002), 1853–1865 | DOI | MR | Zbl
[6] Au-Yang H., Perk J. H. H., “Wavevector-dependent susceptibility in aperiodic planar Ising models”, MathPhys Odyssee 2001: Integrable Models and Beyond, eds. T. Miwa and M. Kashiwara, Birkhäuser, Boston, 2002, 1–21 | MR | Zbl
[7] Babelon O., Bernard D., “From form factors to correlation functions: the Ising model”, Phys. Lett. B, 288 (1992), 113–120 | DOI | MR
[8] Bailey D. H., Borwein J. M., Crandall R. E., “Integrals of the Ising class”, J. Phys. A: Math. Gen., 39 (2006), 12271–12302 | DOI | MR | Zbl
[9] Ballico E., Casnati G., Fontanari C., On the birational geometry of Moduli spaces of pointed curves, math.AG/0701475 | MR
[10] Barad G., The fundamental group of the real moduli spaces $M_{0,n}$. A preliminary report on the topological aspects of some real algebraic varieties, http://www.geocities.com/gbarad2002/group.pdf
[11] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, London, 1982 | MR | Zbl
[12] Baxter R. J., “Solvable eight vertex model on an arbitrary planar lattice”, Phil. Trans. R. Soc. London A, 289 (1978), 315–346 | DOI | MR
[13] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR | Zbl
[14] Baxter R. J., “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors”, Ann. Physics, 76 (1973), 1–24 | DOI | Zbl
[15] Bazhanov V. V., Mangazeev V. V., “The eight-vertex model and Painlevé VI”, Special Issue on Painlevé VI, J. Phys. A: Math. Gen., 39 (2006), 12235–12243 ; hep-th/0602122 | DOI | MR | Zbl
[16] Bazhanov V. V., Nienhuis B., Warnaar O., “Lattice Ising model in a field: $E_8$ scattering theory”, Phys. Lett. B, 322 (1994), 198–206 ; hep-th/9312169 | DOI | MR
[17] Bertin J., Peters C., Variations de structure de Hodge, Variétés de Calabi–Yau et symétrie miroir, Panorama et Synthèses, 3, Société Mathématique de France, Paris, 1996 | MR | Zbl
[18] Beukers F., “A note on the irrationality of $\xi(2)$ and $\xi(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl
[19] Bloch S., “Motives associated to graphs”, Jpn. J. Math., 2 (2007), 165–196 ; available at http://math.bu.edu/people/kayeats/motives/graph-rept061017.pdf | DOI | MR | Zbl
[20] Boel R. J., Kasteleyn P. W., “Correlation-function identities for general Ising models”, Phys. A, 93 (1978), 503–516 | DOI
[21] Boel R. J., Kasteleyn P. W., “Correlation-function identities and inequalities for Ising models with pair interactions”, Comm. Math. Phys., 161 (1978), 191–208 | DOI | MR
[22] Boos H. E., Korepin V. E., “Evaluation of integrals representing correlations in the XXX Heisenberg spin chain”, MathPhys Odyssey 2001, eds. M. Kashiwara and T. Miwa, Birkhäuser, 2002, 65–108 | MR | Zbl
[23] Boos H. E., Gohmann F., Klumper A., Suzuki J., “Factorization of multiple integrals representing the density matrix of a finite segment of the Heisenberg spin chain, in The 75th Anniversary of the Bethe Ansatz”, J. Stat. Mech. Theory Exp., 2006 (2006), P04001, 13 pp., ages | DOI
[24] Boos H. E., Korepin V. E., “Quantum spin chains and Riemann zeta function with odd arguments”, J. Phys. A: Math. Gen., 34 (2001), 5311–5316 ; hep-th/0104008 | DOI | MR | Zbl
[25] Boukraa S., Hassani S., Maillard J.-M., McCoy B. M., Orrick W. P., Zenine N., “Holonomy of the Ising model form factors”, J. Phys. A: Math. Theor., 40 (2007), 75–111 ; math-ph/0609074 | DOI | MR | Zbl
[26] Boukraa S., Hassani S., Maillard J.-M., McCoy B. M., Weil J. A., Zenine N., “Fuchs versus Painlevé”, J. Phys. A: Math. Theor., 40 (2007), 12589–12605 ; math-ph/0701014 | DOI | MR | Zbl
[27] Boukraa S., Hassani S., Maillard J.-M., McCoy B. M., Weil J. A., Zenine N., “Painlevé versus Fuchs”, J. Phys. A: Math. Gen., 39 (2006), 12245–12263 ; math-ph/0602010 | DOI | MR | Zbl
[28] Boukraa S., Hassani S., Maillard J.-M., McCoy B. M., Zenine N., “The diagonal Ising susceptibility”, J. Phys. A: Math. Theor., 40 (2007), 8219–8236 ; math-ph/0703009 | DOI | MR | Zbl
[29] Boukraa S., Hassani S., Maillard J.-M., Zenine N., “Landau singularities and singularities of holonomic integrals of the Ising class”, J. Phys. A: Math. Theor., 40 (2007), 2583–2614 ; math-ph/0701016 | DOI | MR | Zbl
[30] Boukraa S., Hassani S., Maillard J.-M., Zenine N., “Singularities of $n$-fold integrals of the Ising class and the theory of elliptic curves”, J. Phys. A: Math. Theor., 40 (2007), 11713–11748 ; arXiv:0706.3367 | DOI | MR | Zbl
[31] Brown F. C. S., “Périodes des espaces des modules $ M_{0,n}$ et valeurs zêtas multiples. Multiple zeta values and periods of moduli spaces $ M_{0,n}$”, CRAS C. R. Acad. Sci. Paris Ser. I, 342 (2006), 949–954 | MR | Zbl
[32] Buff X., Fehrenbach J., Lochak P., Schnepps L., Vogel P., Espaces de modules des courbes, groupes modulaires et théorie des champs, Panorama et Synthèses, 7, Société Mathématique de France, 1999 | MR | Zbl
[33] Cecotti S., Vafa C., “Ising model and $n=2$ supersymmetric theories”, Comm. Math. Phys., 157 (1993), 139–178 ; hep-th/9209085 | DOI | MR | Zbl
[34] Cresson J., Fischler S., Rivoal T., Séries hypergéométriques multiples et polyzêtas, math.NT/0609743 | MR
[35] Eden R. J., Landshoff P. V., Olive D. I., Polkinghorne J. C., The analytic $S$-matrix, Cambridge University Press, 1966 | MR | Zbl
[36] Erdeleyi A., Asymptotic series, Dover Publishing Co., New York, 1956, p. 47
[37] Erdeleyi, Bateman manuscript project, higher transcendental functions, McGraw Hill, New York, 1955
[38] Farkas G., Guibney A., “The Mori cones of moduli spaces of pointed curves of small genus”, Trans. Amer. Math. Soc., 355 (2003), 1183–1199 ; math.AG/0111268 | DOI | MR | Zbl
[39] Felder G., Varchenko A., “The elliptic Gamma function and $ SL(3,Z)\times Z^3$”, Adv. Math., 156 (2000), 44–76 ; math.QA/9907061 | DOI | MR | Zbl
[40] Feverati G., Grinza P., “Integrals of motion from TBA and lattice-conformal dictionary”, Nuclear Phys. B, 702 (2004), 495–515 ; hep-th/0405110 | DOI | MR | Zbl
[41] Fischler S., “Groupes de Rhin-Viola et intégrales multiples”, J. Théor. Nombres Bordeaux, 15 (2003), 479–534 | MR | Zbl
[42] Fischler S., Intégrales de Brown et de Rhin-Viola pour $\zeta(3)$, math.NT/0609799
[43] Fischler S., “Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...)”, Séminaire Bourbaki, Exposé no. 910, 2003, Astérisque, 294, 2004, 27–62 ; math.NT/0303066 | MR | Zbl
[44] Garnier R., “Sur les singularités irrégulières des équations différentielles linéaires”, J. Math. Pures et Appl., 2 (1919), 99–198
[45] Gerkmann R., “Relative rigid cohomology and deformation of hypersurfaces”, Int. Math. Res. Pap. IMRP, 2007:1 (2007), Art. ID rpm003, 67 pp., ages | MR
[46] Gervais J.-L., Neveu A., “Non-standard 2D critical statistical models from Liouville theory”, Nuclear Phys. B, 257 (1985), 59–76 | DOI | MR
[47] Glutsuk A. A., “Stokes operators via limit monodromy of generic perturbation”, J. Dynam. Control Systems, 5 (1999), 101–135 | DOI | MR | Zbl
[48] Goncharov A. B., Manin Y., “Multiple $\zeta$-motives and moduli spaces $ M_{0,n}$”, Comp. Math., 140 (2004), 1–14 ; math.AG/0204102 | DOI | MR | Zbl
[49] Groeneveld J., Boel R. J., Kasteleyn P. W., “Correlation function identities for general planar Ising systems”, Phys. A, 93 (1978), 138–154 | DOI
[50] Guzzetti D., “The elliptic representation of the general Painlevé VI equation”, Comm. Pure Appl. Math., 55 (2002), 1280–1363 ; math.CV/0108073 | DOI | MR | Zbl
[51] Hanna M., “The modular equations”, Proc. London Math. Soc., 28 (1928), 46–52 | DOI | Zbl
[52] Hara Y., Jimbo M., Konno H., Odake S., Shiraishi J., “Free field approach to the dilute AL models”, J. Math. Phys., 40 (1999), 3791–3826 | DOI | MR | Zbl
[53] Harris M., “Potential automorphy of odd-dimensional symmetric powers of elliptic curves, and applications”, Algebra, Arithmetic and Geometry – Manin Festschrift, Progress in Mathematics, Birkhäuser (to appear)
[54] Hassett B., Tschinkel Y., “On the effective cone of the moduli space of pointed rational curves”, Topology and Geometry: Commemorating SISTAG, Contemp. Math., 314, 2002, 83–96 ; math.AG/0110231 | MR | Zbl
[55] Huttner M., “Constructible sets of linear differential equations and effective rational approximations of polylogarithmic functions”, Israel J. Math., 153 (2006), 1–44 | DOI | MR
[56] Huttner M., Equations différientielles fuchsiennes; Approximations du dilogarithme, de $\zeta(2)$ et $\zeta(3)$,, Publ. IRMA, Lille, 1997
[57] Jaekel M. T., Maillard J.-M., “Inverse functional relations and disorder solutions on the Potts models”, J. Phys. A: Math. Gen., 17 (1984), 2079–2094 | DOI | MR
[58] Jaekel M. T., Maillard J.-M., “Inverse functional relations on the Potts model”, J. Phys. A: Math. Gen., 15 (1982), 2241–2257 | DOI | MR
[59] Jimbo M., Kedem R., Konno H., Miwa T., Weston R., “Difference equations in spin chains with a boundary”, Nuclear Phys. B, 448 (1995), 429–456 ; hep-th/9502060 | DOI | MR | Zbl
[60] Jimbo M., Miwa T., “Studies on holonomic quantum fields. XVII”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 405–410 ; Erratum Proc. Japan Acad. Ser. A Math. Sci., 57 (1981), 347 | DOI | MR
[61] Jimbo M., Miwa T., Nakayashiki A., “Difference equations for the correlations of the eight vertex model”, J. Phys. A: Math. Gen., 26 (1993), 2199–2209 ; hep-th/9211066 | DOI | MR | Zbl
[62] Katz N. M., “Introduction aux travaux récents de Dwork”, Proc. Sympos. Pure Math., vol. XX (State Univ. New York, Stony Brook, New York, 1969), Amer. Math. Soc., Providence, R.I., 1971, 65–75 | MR
[63] Katz N. M., “Nilpotent connections and the monodromy theorem: applications of a result of Turrittin”, Publications mathématiques de l'IHES, 39 (1970), 175–232 | MR | Zbl
[64] Katz N. M., “On the differential equations satisfied by period matrices”, Inst. Hautes Etudes Sci. Publ. Math., 35 (1968), 223–258 | DOI | MR
[65] Katz N. M., Rigid local systems, Ann. of Math. Stud., 139, Princeton University press, 1996 | MR | Zbl
[66] Katz N. M., “Travaux de Dwork”, Séminaire Bourbaki (1971/1972), Exp. No. 409, Lecture Notes in Math., 317, Springer Verlag, 1973, 167–200 | MR
[67] Kaufman B., “Crystal statistics. II. Partition function evaluated by spinor analysis”, Phys. Rev., 76 (1949), 1232–1243 | DOI | Zbl
[68] Kaufman B., Onsager L., “Short-range order in a binary Ising lattice”, Phys. Rev., 76 (1949), 1244–1252 | DOI | Zbl
[69] Krattenthaler C., Rivoal T., “An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series”, Ramanujan J., 13 (2007), 203–219 ; math.CA/0312148 | DOI | MR | Zbl
[70] Kreimer D., Knots and Feynman diagrams, Chapter 9, Cambridge Lecture Notes in Physics, 13, Cambridge University Press, 2000 | MR | Zbl
[71] Lario J.-C., Elliptic curves with CM defined over extensions of type $(2,\dots,2)$, available at http://www-ma2.upc.es/~lario/ellipticm.htm
[72] Levin A., Racinet G., Towards multiple elliptic polylogarithms, math.NT/0703237
[73] Lukyanov S., Pugai Y., “Multi-point local height probabilities in the integrable RSOS model”, Nuclear Phys. B, 473 (1996), 631–658 ; hep-th/9602074 | DOI | MR | Zbl
[74] Lyberg I., McCoy B. M., “Form factor expansion of the row and diagonal correlation functions of the two dimensional using model”, J. Phys. A: Math. Theor., 40 (2007), 3329–3346 ; math-ph/0612051 | DOI | MR | Zbl
[75] Maier R. S., On rationally parametrized modular equations, math.NT/0611041 | MR
[76] Maillard J.-M.,, “The inversion relation: some simple examples”, J. Physique, 46 (1984), 329–341 | MR
[77] Maillard J.-M., Boukraa S., “Modular invariance in lattice statistical mechanics”, Ann. Fond. Louis de Broglie, 26, Special Issue 2 (2001), 287–328 | MR
[78] Manin Yu. I., “Sixth Painlevé equation, Universal elliptic curve, and mirror of $P^2$”, Amer. Math. Soc. Transl. Ser. 2, 186 (1998), 131–151 ; alg-geom/9605010 | MR | Zbl
[79] Manojlovic N., Nagy Z., “Creation operators and algebraic Bethe ansatz for elliptic quantum group $E_{\tau,\eta}(so_3)$”, J. Phys. A: Math. Theor., 40 (2007), 4181–4191 ; math.QA/0612087 | DOI | MR | Zbl
[80] Martinez J. R., Correlation functions for the $Z$-invariant Ising model, hep-th/9609135
[81] Mazzocco M., “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321 (2001), 157–195 ; math.AG/9901054 | DOI | MR | Zbl
[82] McCoy B. M., Perk J. H. H., Wu T. T., “Ising field theory: quadratic difference equations for the $n$-point Green's functions on the lattice”, Phys. Rev. Lett., 46 (1981), 757–760 | DOI | MR
[83] McCoy B., Tracy C. A., Wu T. T., “Painlevé equations of the third kind”, J. Math. Phys., 18 (1977), 1058–1092 | DOI | MR | Zbl
[84] McCoy B. M., Wu T. T., “Nonlinear partial difference equations for the two-dimensional Ising model”, Phys. Rev. Lett., 45 (1980), 675–678 | DOI | MR
[85] Murata M., Sakai H., Yoneda J., “Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type $E_8^{(1)}$”, J. Math. Phys., 44 (2003), 1396–1414 ; nlin.SI/0210040 | DOI | MR | Zbl
[86] Mussardo G., Il Modello di Ising introduzione alla teoria dei campi e delle transizioni di fase, ed. Bollati Boringhieri, 2007 | Zbl
[87] Nickel B., “On the singularity structure of the Ising model susceptibility”, J. Phys. A: Math. Gen., 32 (1999), 3889–3906 | DOI | MR | Zbl
[88] Nickel B., “Addendum to “On the singularity structure of the Ising model susceptibility””, J. Phys. A: Math. Gen., 33 (2000), 1693–1711 | DOI | MR | Zbl
[89] Nickel B., “Comment on "The Fuchsian differential equation of the square lattice Ising model $\chi^{(3)}$ susceptibility"”, J. Phys. A: Math. Gen., 37 (2004), 9651–9668 ; N. Zenine, S. Boukraa, S. Hassani and J.-M. Maillard, J. Phys. A: Math. Gen., 38 (2005), 4517–4518 | DOI | MR | DOI | MR
[90] Okamoto K., “Studies on the Painlevé equations. I. Sixth Painlevé equation $P~{\rm VI}$”, Ann. Mat. Pura Appl. (4), 146 (1987), 337–381 | DOI | MR | Zbl
[91] Onsager L., “Crystal statistics. I. A two-dimensional model with an order disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl
[92] Onsage L., Nuovo Cimento, 6 suppl. (1949), 261 | MR
[93] Orrick W. P., Nickel B. G., Guttmann A. J., Perk J. H. H., “The susceptibility of the square lattice Ising model: new developments”, J. Statist. Phys., 102 (2001), 795–841 ; cond-mat/0103074 | DOI | MR | Zbl
[94] Palmer J., Tracy C. A., “Two-dimensional Ising correlations: convergence of the scaling limit”, Adv. in Appl. Math., 2 (1981), 329–388 | DOI | MR | Zbl
[95] Pearce P. A., “Temperley–Lieb operators and critical A-D-E models”, Internat. J. Modern Phys. A, 4 (1990), 715–734 | DOI | MR | Zbl
[96] Perk J. H. H., “Quadratic identities for Ising model correlations”, Phys. Lett. A, 79 (1980), 3–5 | DOI | MR
[97] Perk J. H. H., Au-Yang H., “Some recent results on pair correlation functions and susceptibilities in exactly solvable models”, in Dunk Island Conference in Honor of 60th Birthday of A. J. Guttmann, J. Phys. Conf. Ser., 42 (2006), 231–238 ; math-ph/0606046 | DOI
[98] Perk J. H. H., Capel H. W., “Time-dependent $xx$-correlation functions in the one-dimensional $XY$-model see equation (6.16)”, Phys. A, 89 (1977), 265–303 | DOI | MR
[99] Picard E., “Mémoire sur la theorie des functions algébriques de deux variables”, Journal de Liouville, 5 (1889), 135–319
[100] Piezas T. III, Weisstein E. W., $j$-function, from MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/j-Function.html
[101] Racinet G., “Doubles mélanges des polylogarithmes multiples aux racines de l'unité”, Publ. Math. Inst. Hautes Études Sci., no. 95 (2002), 185–231 ; math.QA/0202142 | DOI | MR
[102] Ramis J.-P., “Confluence et Résurgence”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1992), 703–716 | MR
[103] Rammal R., Maillard J.-M., “$q$-state Potts model on the checkerboard lattice”, J. Phys. A: Math. Gen., 16 (1983), 1073–1081 | DOI | MR
[104] Rammal R., Maillard J.-M.,, “Some analytical consequences of the inverse relation for the Potts model”, J. Phys. A: Math. Gen., 16 (1983), 353–367 | DOI | MR
[105] Rhoades R. C., Elliptic curves and modular forms (notes based on A Course at the University of Wisconsin – Madison MATH 844 during the Spring 2006 taught by Professor Nigel Boston), available at http://www.math.wisc.edu/~rhoades/Notes/EC.pdf
[106] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[107] Seaton K. A., Batchelor M. T., “The dilute $A_4$ models, the $E_7$ mass spectrum and the tricritical Ising model”, J. Math. Phys., 43 (2002), 2636–2653 ; math-ph/0110021 | DOI | MR | Zbl
[108] Singer M. F., “Testing reducibility of linear differential operators: a group theoretic perspective”, Appl. Alg. Eng. Commun. Comp., 7:2 (1996), 77–104 | DOI | MR | Zbl
[109] Sb. Math., 187 (1996), 1819–1852 | DOI | MR | Zbl
[110] Moscow Univ. Math. Bull., 53:3 (1998), 48–52 | MR | Zbl
[111] Stanev Y. S., Todorov I., “On the Schwartz problem for the $ su_2$ Knizhnik–Zamolodchikov equation”, Lett. Math. Phys., 35 (1995), 123–134 | DOI | MR | Zbl
[112] Sternin B. Yu., Shatalov V. E., “On the confluence phenomenon of fuchsian equations”, J. Dynam. Control Systems, 3 (1997), 433–448 | DOI | MR | Zbl
[113] Todorov I. T., “Arithmetic features of rational conformal field theory”, Ann. Inst. H. Poincaré, 63 (1995), 427–453 | MR | Zbl
[114] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 ; available at http://www4.ncsu.edu/singer/ | MR
[115] van Hoeij M.,, “Rational solutions of the mixed differential equation and its application to factorization of differential operators”, Proceedings ISSAC '96, ACM, New York, 1996, 219–225 | Zbl
[116] Vasilyev D. V., “On small linear forms for the values of the Riemann zeta-function at off integers”, Doklady NAN Belarusi, 45:5 (2001), 36–40, Reports of the Belarus National Academy of Sciences (in Russian) | MR
[117] Moscow Univ. Math. Bull., 51:1 (1996), 41–43 | MR
[118] Warnaar O., Nienhuis B., Seaton K. A., “New construction of solvable lattice models including an Ising model in a field”, Phys. Rev. Lett., 69 (1992), 710–712 | DOI | MR | Zbl
[119] Warnaar O., Pearce P. A., “Exceptional structure of the dilute $A_3$ model: $E_8$ and $E_7$ Rogers–Ramanujan identities”, J. Phys. A: Math. Gen., 27 (1994), L891–L897 ; hep-th/9408136 | DOI | MR | Zbl
[120] Weisstein E. W., Jacobi theta functions, from MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/JacobiThetaFunctions.html
[121] Witte N. S., “Isomonodromic deformation theory and the next-to-diagonal correlations of the anisotropic square lattice Ising model”, J. Phys. A: Math. Theor., 40 (2007), F491–F501 ; arXiv:0705.0557 | DOI | MR | Zbl
[122] Wu T. T., “Theory of Toeplitz determinants and of the spin correlations of the two-dimensional Ising model”, Phys. Rev., 149 (1966), 380–440 | DOI
[123] Wu T. T., McCoy B. M., Tracy C. A., Barouch E., “Spin-spin correlation functions for the two dimensional Ising model: exact theory in the scaling region”, Phys. Rev. B, 13 (1976), 316–374 | DOI
[124] Yamada K., “On the spin-spin correlation function of the Ising square lattice and the zero field susceptibility”, Progr. Theoret. Phys., 71 (1984), 1416–1418 | DOI | MR | Zbl
[125] Yang C. N., “The spontaneous magnetization of the two dimensional Ising model”, Physical Rev. (2), 85 (1952), 808–816 | DOI | MR | Zbl
[126] Zenine N., Boukraa S., Hassani S., Maillard J. M., “The Fuchsian differential equation of the square Ising model $\chi^{(3)}$ susceptibility”, J. Phys. A: Math. Gen., 37 (2004), 9651–9668 ; math-ph/0407060 | DOI | MR | Zbl
[127] Zenine N., Boukraa S., Hassani S., Maillard J. M., “Ising model susceptibility: Fuchsian differential equation for $\chi^{(4)}$ and its factorization properties”, J. Phys. A: Math. Gen., 38 (2005), 4149–4173 ; cond-mat/0502155 | DOI | MR | Zbl
[128] Zenine N., Boukraa S., Hassani S., Maillard J. M., “Square lattice Ising model susceptibility: connection matrices and singular behavior of $\chi^{(3)}$ and $\chi^{(4)}$”, J. Phys. A: Math. Gen., 38 (2005), 9439–9474 ; , hep-th/0506214math-ph/0506065 | DOI | MR | Zbl
[129] Zenine N., Boukraa S., Hassani S., Maillard J. M., “Square lattice Ising model susceptibility: series expansion method, and differential equation for $\chi^{(3)}$”, J. Phys. A: Math. Gen., 38 (2005), 1875–1899 ; hep-ph/0411051 | DOI | MR | Zbl
[130] Zhang C., “Confluence et phénomènes de Stokes”, J. Math. Sci. Univ. Tokyo, 3 (1996), 91–107 | MR | Zbl