@article{SIGMA_2007_3_a95,
author = {Amitava Choudhuri and B. Talukdar and U. Das},
title = {Lagrangian {Approach} to {Dispersionless} {KdV} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a95/}
}
Amitava Choudhuri; B. Talukdar; U. Das. Lagrangian Approach to Dispersionless KdV Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a95/
[1] Zakharov V. E., “Benney equations and quasiclassical approximation in the method of the inverse problem”, Funct. Anal. Appl., 14:2 (1980), 89–98 | DOI | MR | Zbl
[2] Olver P. J., Nutku Y., “Hamiltonian structures for systems of hyperbolic conservation laws”, J. Math. Phys., 29 (1988), 1610–1619 ; Brunelli J. C., “Dispersionless limit of integrable models”, Braz. J. Phys., 30 (2000), 455–468 ; nlin.SI/0207042 | DOI | MR | Zbl | DOI
[3] Arik M., Neyzi F., Nutku Y., Olver P. J., Verosky J. M., “Multi-Hamiltonian structure of the Born–Infeld equation”, J. Math. Phys., 30 (1989), 1338–1344 ; Das A., Huang W. J., “The Hamiltonian structures associated with a generalized Lax operator”, J. Math. Phys., 33 (1992), 2487–2497 ; Brunelli J. C., Das A., “Properties of nonlocal charges in the supersymmetric two boson hierarchy”, Phys. Lett. B, 354 (1995), 307–314 ; ; Brunelli J. C., Das A., “Supersymmetric two-boson equation, its reductions and the nonstandard supersymmetric KP hierarchy”, Intern. J. Modern Phys. A, 10 (1995), 4563–4599 ; hep-th/9504030hep-th/9505093 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[4] Calogero F., Degasperis A., Spectral transform and soliton, North-Holland Publising Company, New York, 1982 | MR | Zbl
[5] Olver P. J., Application of Lie groups to differential equation, Springer-Verlag, New York, 1993 | MR
[6] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR | Zbl
[7] Frankel T., The geometry of physics, Cambridge University Press, UK, 1997 | MR | Zbl
[8] Ali Sk. G., Talukdar B., Das U., “Inverse problem of variational calculus for nonlinear evolution equations”, Acta Phys. Polon. B, 38 (2007), 1993–2002 ; nlin.SI/0603037 | MR
[9] Kaup D. J., Malomed B. A., “The variational principle for nonlinear waves in dissipative systems”, Phys. D, 87 (1995), 155–159 | DOI | MR
[10] Barcelos-Neto J., Constandache A., Das A., “Dispersionless fermionic KdV”, Phys. Lett. A, 268 (2000), 342–351 ; solv-int/9910001 | DOI | MR | Zbl
[11] Zakharov V. E., Faddeev L. D., “Korteweg–de Vries equation: a completely integrable Hamiltonian systems”, Funct. Anal. Appl., 5:4 (1971), 280–287 | DOI | Zbl
[12] Gardner C. S., “Korteweg–de Vries equation and generalizations. IV. The Korteweg–de Vries equation as a Hamiltonian system”, J. Math. Phys., 12 (1971), 1548–1551 | DOI | MR | Zbl
[13] Hill E. L., “Hamilton's principle and the conservation theorems of mathematical physics”, Rev. Modern Phys., 23 (1951), 253–260 | DOI | MR | Zbl
[14] Gelfand I. M., Fomin S. V., Calculus of variations, Dover Publ., 2000 | Zbl
[15] Chen H. H., Lee Y. C., Lin J. E., “On a new hierarchy of symmetries for the Kadomtsev–Petviashvilli equation”, Phys. D, 9 (1983), 439–445 | DOI | MR | Zbl
[16] Orlov A. Yu., Shulman E. I., “Additional symmetries for integral and conformal algebra representation”, Lett. Math. Phys., 12 (1986), 171–179 | DOI | MR | Zbl
[17] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer, Berlin, 1987 | MR | Zbl