Stanilov–Tsankov–Videv Theory
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We survey some recent results concerning Stanilov–Tsankov–Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold.
Keywords: algebraic curvature tensor; anti-self-dual; conformal Jacobi operator; conformal Osserman manifold; Jacobi operator; Jacobi–Tsankov; Jacobi–Videv; mixed-Tsankov; Osserman manifold; Ricci operator; self-dual; skew-symmetric curvature operator; skew-Tsankov; skew-Videv; Walker manifold; Weyl conformal curvature operator.
@article{SIGMA_2007_3_a94,
     author = {Miguel Brozos-V\'azquez and Bernd Fiedler and Eduardo Garc{\'\i}a-R{\'\i}o and Peter Gilkey and Stana Nik\v{c}evi\'c and Grozio Stanilov and Yulian Tsankov and Ram\'on V\'azquez-Lorenzo and Veselin Videv},
     title = {Stanilov{\textendash}Tsankov{\textendash}Videv {Theory}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a94/}
}
TY  - JOUR
AU  - Miguel Brozos-Vázquez
AU  - Bernd Fiedler
AU  - Eduardo García-Río
AU  - Peter Gilkey
AU  - Stana Nikčević
AU  - Grozio Stanilov
AU  - Yulian Tsankov
AU  - Ramón Vázquez-Lorenzo
AU  - Veselin Videv
TI  - Stanilov–Tsankov–Videv Theory
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a94/
LA  - en
ID  - SIGMA_2007_3_a94
ER  - 
%0 Journal Article
%A Miguel Brozos-Vázquez
%A Bernd Fiedler
%A Eduardo García-Río
%A Peter Gilkey
%A Stana Nikčević
%A Grozio Stanilov
%A Yulian Tsankov
%A Ramón Vázquez-Lorenzo
%A Veselin Videv
%T Stanilov–Tsankov–Videv Theory
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a94/
%G en
%F SIGMA_2007_3_a94
Miguel Brozos-Vázquez; Bernd Fiedler; Eduardo García-Río; Peter Gilkey; Stana Nikčević; Grozio Stanilov; Yulian Tsankov; Ramón Vázquez-Lorenzo; Veselin Videv. Stanilov–Tsankov–Videv Theory. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a94/

[1] Blažić N., Gilkey P., “Conformally Osserman manifolds and conformally complex space forms”, Int. J. Geom. Methods Mod. Phys., 1 (2004), 97–106 ; math.DG/0311263 | DOI | MR | Zbl

[2] Blažić N., Gilkey P., “Conformally Osserman manifolds and self-duality in Riemannian geometry”, Proceedings of the Conference “Differential Geometry and Its Applications” (August 30 – September 3, 2004, Charles University, Prague, Czech Republic), eds. J. Bures, O. Kowalski, D. Krupka and J. Slovak, MATFYZPRESS, 2005, 15–18 ; math.DG/0504498 | MR

[3] Blažić N., Gilkey P., Nikčević S., Simon U., “The spectral geometry of the Weyl conformal tensor”, Banach Center Publ., 69 (2005), 195–203 ; math.DG/0310226 | MR | Zbl

[4] Brozos-Vázquez M., García–Río E., Gilkey P., Vázquez-Lorenzo R., “Examples of signature $(2,2)$ manifolds with commuting curvature operators”, J. Phys. A: Math. Theor., 40:43 (2007), 13149–13159 ; arXiv:0708.2770 | DOI | MR | Zbl

[5] Brozos-Vázquez M., García–Río E., Vázquez-Lorenzo R., “Conformally Osserman four-dimensional manifolds whose conformal Jacobi operators have complex eigenvalues”, Proc. Royal Soc. A, 462 (2006), 1425–1441 | DOI | MR | Zbl

[6] Brozos-Vázquez M., García–Río E., Gilkey P., Vázquez–Lorenzo R., Completeness, Ricci blowup, the Osserman and the conformal Osserman condition for Walker signature (2,2) manifolds, Proceedings of XV International Workshop on Geometry and Physics

[7] Brozos-Vázquez M., Gilkey P., “Pseudo-Riemannian manifolds with commuting Jacobi operators”, Rend. Circ. Mat. Palermo, 55 (2006), 163–174 ; math.DG/0608707 | DOI | MR | Zbl

[8] Brozos-Vázquez M., Gilkey P., “The global geometry of Riemannian manifolds with commuting curvature operators”, J. Fixed Point Theory Appl., 1 (2007), 87–96 ; math.DG/0609500 | DOI | MR | Zbl

[9] Brozos-Vázquez M., Gilkey P., “Manifolds with commuting Jacobi operators”, J. Geom., 86 (2007), 21–30 ; math.DG/0507554 | DOI | MR

[10] Brozos-Vázquez M., Gilkey P., Nikčević S., “Jacobi–Tsankov manifolds which are not 2-step nilpotent”, Proceedings of the Conference “Contemporary Geometry and Related Topics” (June 26–July 2, 2005, Belgrade, Serbia and Montenegro), eds. N. Bokan, M. Djorić, A. T. Fomenko, Z. Rakic, B. Wegner and J. Wess, University of Belgrade, Serbia, 2006, 63–79; math.DG/0609565

[11] Chaichi M., García–Río E., Matsushita Y., “Curvature properties of four-dimensional Walker metrics”, Classical Quantum Gravity, 22 (2005), 559–577 | DOI | MR | Zbl

[12] Díaz-Ramos J. C., García-Río E., “A note on the structure of algebraic curvature tensors”, Linear Algebra Appl., 382 (2004), 271–277 | DOI | MR

[13] Fiedler B., “Determination of the structure of algebraic curvature tensors by means of Young symmetrizers”, Seminaire Lotharingien de Combinatoire, 48 (2003), Art. B48d, 20 pp., ages ; math.CO/0212278 | MR

[14] Fiedler B., Gilkey P., Nilpotent Szabó, “Osserman and Ivanov–Petrova pseudo Riemannian manifolds”, Recent advances in Riemannian and Lorentzian geometries, Contemp. Math., 337, Amer. Math. Soc., Providence, RI, 2003, 53–64 ; math.DG/0211080 | MR

[15] García–Río E., Kupeli D. N., Vázquez-{Abal} M. E., Vázquez-Lorenzo R., “Affine Osserman connections and their Riemann extensions”, Differential Geom. Appl., 11 (1999), 145–153 | DOI | MR | Zbl

[16] García-Río E., Kupeli D., Vázquez-Lorenzo R., Osserman manifolds in semi-Riemannian geometry, Lecture Notes in Mathematics, 1777, Springer-Verlag, Berlin, 2002 | MR | Zbl

[17] Gilkey P., Geometric properties of natural operators defined by the Riemann curvature tensor, World Scientific, 2001 | MR

[18] Gilkey P., The geometry of curvature homogeneous pseudo Riemannian manifolds, Imperial College Press, 2007 | MR | Zbl

[19] Gilkey P., Puffini E., Videv V., Puffini–Videv models and manifolds, J. Geom. to appear | MR

[20] Gilkey P., Nikčević S., “Pseudo-Riemannian Jacobi–Videv manifolds”, Int. J. Geom. Methods Mod. Phys., 4 (2007), 727–738 ; arXiv:0708.1096 | DOI | MR | Zbl

[21] Gilkey P., Stanilov G., Videv V., “Pseudo Riemannian manifolds whose generalized Jacobi operator has constant characteristic polynomial”, J. Geom., 62 (1998), 144–153 | DOI | MR | Zbl

[22] Ivanova M., Videv V., Zhelev Z., Four-dimensional Riemannian manifolds with commuting higher order Jacobi operators, math.DG/0701090 | MR

[23] Osserman R., “Curvature in the eighties”, Amer. Math. Monthly, 97 (1990), 731–756 | DOI | MR | Zbl

[24] Stanilov G., Videv V., “On a generalization of the Jacobi operator in the Riemannian geometry”, Annuaire Univ. Sofia Fac. Math. Inform., 86 (1994), 27–34 | MR

[25] Stanilov G., Videv V., “Four dimensional pointwise Osserman manifolds”, Abh. Math. Sem. Univ. Hamburg, 68 (1998), 1–6 | DOI | MR | Zbl

[26] Stanilov G., Videv V., “On the commuting of curvature operators”, Proceedings of the 33rd Spring Conference of the Union of Bulgarian Mathematicians Borovtes “Mathematics and Education in Mathematics” (April 1–4, 2004, Sofia), Sofia, 2004, 176–179 | MR

[27] Tsankov Y., “A characterization of $n$-dimensional hypersurface in Euclidean space with commuting curvature operators”, Banach Center Publ., 69 (2005), 205–209 | DOI | MR | Zbl

[28] Videv V., A characterization of the $4$-dimensional Einstein Riemannian manifolds using curvature operators, Preprint

[29] Walker A. G., “Canonical form for a Riemannian space with a parallel field of null planes”, Quart. J. Math., Oxford Ser. (2), 1 (1950), 69–79 | DOI | MR | Zbl

[30] Walker A. G., “Canonical forms. II. Parallel partially null planes”, Quart. J. Math., Oxford Ser. (2), 1 (1950), 147–152 | DOI | MR | Zbl