Heat Trace Asymptotics on Noncommutative Spaces
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a mini-review of the heat kernel expansion for generalized Laplacians on various noncommutative spaces. Applications to the spectral action principle, renormalization of noncommutative theories and anomalies are also considered.
Keywords: heat trace asymptotics; noncommutative field theory.
@article{SIGMA_2007_3_a92,
     author = {Dmitri V. Vassilevich},
     title = {Heat {Trace} {Asymptotics} on {Noncommutative} {Spaces}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a92/}
}
TY  - JOUR
AU  - Dmitri V. Vassilevich
TI  - Heat Trace Asymptotics on Noncommutative Spaces
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a92/
LA  - en
ID  - SIGMA_2007_3_a92
ER  - 
%0 Journal Article
%A Dmitri V. Vassilevich
%T Heat Trace Asymptotics on Noncommutative Spaces
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a92/
%G en
%F SIGMA_2007_3_a92
Dmitri V. Vassilevich. Heat Trace Asymptotics on Noncommutative Spaces. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a92/

[1] Alvarez-Gaume L., Della Pietra S., Moore G. W., “Anomalies and odd dimensions”, Annals Phys., 163 (1985), 288–317 | DOI | MR | Zbl

[2] Avramidi I. G., “Dirac operator in matrix geometry”, Int. J. Geom. Methods Mod. Phys., 2 (2005), 227–264 ; math-ph/0502001 | DOI | MR | Zbl

[3] Avramidi I., Branson T., “Heat kernel asymptotics of operators with nonLaplace principal part”, Rev. Math. Phys., 13 (2001), 847–890 ; math-ph/9905001 | DOI | MR | Zbl

[4] Barvinsky A. O., Vilkovisky G. A., “Covariant perturbation theory. 2. Second order in the curvature. General algorithms”, Nuclear Phys. B, 333 (1990), 471–511 | DOI | MR

[5] Branson T. P., Gilkey P. B., “The asymptotics of the Laplacian on a manifold with boundary”, Comm. Partial Differential Equations, 15 (1990), 245–272 | DOI | MR | Zbl

[6] Branson T. P., Gilkey P. B., Vassilevich D. V., “The asymptotics of the Laplacian on a manifold with boundary. 2”, Boll. Union. Mat. Ital., 11 (1997), 39–67 ; hep-th/9504029 | MR | Zbl

[7] Branson T. P., Gilkey P. B., Kirsten K., Vassilevich D. V., “Heat kernel asymptotics with mixed boundary conditions”, Nuclear Phys. B, 563 (1999), 603–626 ; hep-th/9906144 | DOI | MR | Zbl

[8] Chamseddine A. H., Connes A., “The spectral action principle”, Comm. Math. Phys., 186 (1997), 731–750 ; hep-th/9606001 | DOI | MR | Zbl

[9] Chamseddine A. H., Connes A., A dress for SM the beggar, arXiv:0706.3690

[10] Chu C. S., “Induced Chern–Simons and WZW action in noncommutative spacetime”, Nuclear Phys. B, 580 (2000), 352–362 ; hep-th/0003007 | DOI | MR | Zbl

[11] Connes A., “$C^*$-algèbres et géométrie différentielle”, C. R. Acad. Sci. Paris, 290 (1980), 599–604 | MR | Zbl

[12] Connes A., Noncommutative geometry, Academic Press, London and San Diego, 1994 | MR | Zbl

[13] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Comm. Math. Phys., 221 (2001), 141–159 ; math.QA/0011194 | DOI | MR | Zbl

[14] Connes A., Dubois-Violette M., “Noncommutative finite-dimensional manifolds. I. Spherical manifolds and related examples”, Comm. Math. Phys., 230 (2002), 539–579 ; math.QA/0107070 | DOI | MR | Zbl

[15] Deser S., Griguolo L., Seminara D., “Gauge invariance, finite temperature and parity anomaly in $D=3$”, Phys. Rev. Lett., 79 (1997), 1976–1979 ; hep-th/9705052 | DOI | MR | Zbl

[16] Dowker J. S., Critchley R., “Effective Lagrangian and energy momentum tensor in de Sitter space”, Phys. Rev. D, 13 (1976), 3224–3232 | DOI | MR

[17] Essouabri D., Iochum B., Levy C., Sitarz A., Spectral action on noncommutative torus, arXiv:0704.0564 | MR

[18] Gayral V., “Heat-kernel approach to UV/IR mixing on isospectral deformation manifolds”, Ann. Henri Poincaré, 6 (2005), 991–1023 ; hep-th/0412233 | DOI | MR | Zbl

[19] Gayral V., Gracia-Bondia J. M., Ruiz F. R., “Trouble with space-like noncommutative field theory”, Phys. Lett. B, 610 (2005), 141–146 ; hep-th/0412235 | DOI | MR

[20] Gayral V., Gracia-Bondia J. M., Ruiz F. R., “Position-dependent noncommutative products: classical construction and field theory”, Nuclear Phys. B, 727 (2005), 513–536 ; hep-th/0504022 | DOI | MR | Zbl

[21] Gayral V., Iochum B., “The spectral action for Moyal plane”, J. Math. Phys., 46 (2005), 043503, 17 pp., ages ; hep-th/0402147 | DOI | MR | Zbl

[22] Gayral V., Iochum B., Varilly J. C., “Dixmier traces on noncompact isospectral deformations”, J. Funct. Anal., 237 (2006), 507–539 ; hep-th/0507206 | DOI | MR | Zbl

[23] Gayral V., Iochum B., Vassilevich D. V., “Heat kernel and number theory on NC-torus”, Comm. Math. Phys., 273 (2007), 415–443 ; hep-th/0607078 | DOI | MR | Zbl

[24] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[25] Gilkey P. B., Asymptotic formulae in spectral geometry, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl

[26] Grandi N. E., Silva G. A., “Chern–Simons action in noncommutative space”, Phys. Lett. B, 507 (2001), 345–350 ; hep-th/0010113 | DOI | MR | Zbl

[27] Grosse H., Wohlgenannt M., “Noncommutative QFT and renormalization”, J. Phys. Conf. Ser., 53 (2006), 764–792 ; hep-th/0607208 | DOI

[28] Grosse H., Wohlgenannt M., Induced gauge theory on a noncommutative space, hep-th/0703169 | MR

[29] Grosse H., Wulkenhaar R., “Renormalisation of $\phi^4$ theory on noncommutative $\mathbb R^4$ in the matrix base”, Comm. Math. Phys., 256 (2005), 305–374 ; hep-th/0401128 | DOI | MR | Zbl

[30] Hawking S. W., “Zeta function regularization of path integrals in curved space-time”, Comm. Math. Phys., 55 (1977), 133–148 | DOI | MR | Zbl

[31] Kirsten K., “The $a_5$ heat kernel coefficient on a manifold with boundary”, Classical Quantum Gravity, 15 (1998), L5–L12 ; hep-th/9708081 | DOI | MR | Zbl

[32] Kirsten K., Spectral functions in mathematics and physics, Chapman Hall/CRC, Boca Raton, FL, 2001

[33] Kontsevich M., “Deformation quantization of Poisson manifolds. I”, Lett. Math. Phys., 66 (2003), 157–216 ; q-alg/9709040 | DOI | MR | Zbl

[34] Madore J., “The fuzzy sphere”, Classical Quantum Gravity, 9 (1992), 69–88 | DOI | MR

[35] Nest R., Vogt E., Werner W., “Spectral action and the Connes–Chamsedinne model”, Noncommutative geometry and the standard model of elementary particle physics, Lect. Notes Phys., 596, Springer, Berlin, 2002, 109–132 | MR | Zbl

[36] Niemi A. J., “Topological terms induced by finite temperature and density fluctuations”, Phys. Rev. Lett., 57 (1986), 1102–1105 | DOI | MR

[37] Sasakura N., “Heat kernel coefficients for compact fuzzy spaces”, JHEP, 2004:12 (2004), 009, 9 pp., ages ; hep-th/0411029 | DOI | MR

[38] Sasakura N., “Effective local geometric quantities in fuzzy spaces from heat kernel expansions”, JHEP, 2005:3 (2005), 015, 26 pp., ages ; hep-th/0502129 | DOI | MR

[39] Strelchenko A., “Heat kernel of non-minimal gauge field kinetic operators on Moyal plane”, Internat. J. Modern Phys. A, 22 (2007), 181–202 ; hep-th/0608134 | DOI | MR | Zbl

[40] Strelchenko A. V., Vassilevich D. V., “On space-time noncommutative theories at finite temperature”, Phys. Rev. D, 76 (2007), 065014, 12 pp., ages ; arXiv:0705.4294 | DOI | MR

[41] Szabo R. J., “Symmetry, gravity and noncommutativity”, Classical Quantum Gravity, 23 (2006), R199–R242 ; hep-th/0606233 | DOI | MR | Zbl

[42] Vassilevich D. V., “Vector fields on a disk with mixed boundary conditions”, J. Math. Phys., 36 (1995), 3174–3182 ; gr-qc/9404052 | DOI | MR | Zbl

[43] Vassilevich D. V., “Heat kernel expansion: user's manual”, Phys. Rep., 388 (2003), 279–360 ; hep-th/0306138 | DOI | MR | Zbl

[44] Vassilevich D. V., “Non-commutative heat kernel”, Lett. Math. Phys., 67 (2004), 185–194 ; hep-th/0310144 | DOI | MR | Zbl

[45] Vassilevich D. V., “Spectral problems from quantum field theory”, Spectral geometry of manifolds with boundary and decomposition of manifolds, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005, 3–21 ; math-ph/0403052 | MR | Zbl

[46] Vassilevich D. V., “Quantum noncommutative gravity in two dimensions”, Nuclear Phys. B, 715 (2005), 695–712 ; hep-th/0406163 | DOI | MR | Zbl

[47] Vassilevich D. V., “Heat kernel, effective action and anomalies in noncommutative theories”, JHEP, 2005:8 (2005), 085, 19 pp., ages ; hep-th/0507123 | DOI | MR

[48] Vassilevich D. V., “Induced Chern–Simons action on noncommutative torus”, Modern Phys. Lett. A, 22 (2007), 1255–1263 ; hep-th/0701017 | DOI | MR | Zbl