@article{SIGMA_2007_3_a91,
author = {Maurice R. Kibler},
title = {Miscellaneous {Applications} of {Quons}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a91/}
}
Maurice R. Kibler. Miscellaneous Applications of Quons. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a91/
[1] Arik M., Coon D. D., “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17 (1976), 524–527 | DOI | MR
[2] Kuryshkin M. V., “Opérateurs quantiques généralisés de création et d'annihilation”, Ann. Fond. Louis de Broglie, 5 (1980), 111–125
[3] Jannussis A. D., Papaloucas L. C., Siafarikas P. D., “Eigenfunctions and eigenvalues of the $q$-differential operators”, Hadronic J., 3 (1980), 1622–1632 | MR | Zbl
[4] Biedenharn L. C., “The quantum group SU$_q$(2) and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22 (1989), L873–L878 | DOI | MR | Zbl
[5] Sun C.-P., Fu H.-C., “The $q$-deformed boson realisation of the quantum group $\mathrm{SU}(n)_q$ and its representations”, J. Phys. A: Math. Gen., 22 (1989), L983–L986 | DOI | MR | Zbl
[6] Macfarlane A. J., “On $q$-analogues of the quantum harmonic oscillator and the quantum group $\mathrm{SU}(2)_q$”, J. Phys. A: Math. Gen., 22 (1989), 4581–4588 | DOI | MR | Zbl
[7] Chaturvedi S., Kapoor A. K., Sandhya R., Srinivasan V., Simon R., “Generalized commutation relations for a single-mode oscillator”, Phys. Rev. A, 43 (1991), 4555–4557 | DOI | MR
[8] Greenberg O. W., Quons, an interpolation between Bose and Fermi oscillators, cond-mat/9301002
[9] Daoud M., Hassouni Y., Kibler M., “The $k$-fermions as objects interpolating between fermions and bosons”, Symmetries in Science, X, eds. B. Gruber and M. Ramek, Plenum Press, New York, 1998, 63–67 ; quant-ph/9710016 | MR
[10] Daoud M., Hassouni Y., Kibler M., “Generalized supercoherent states”, Phys. Atom. Nuclei, 61 (1998), 1821–1824 ; quant-ph/9804046 | MR
[11] Ge M.-L., Su G., “The statistical distribution function of the $q$-deformed harmonic-oscillator”, J. Phys. A: Math. Gen., 24 (1991), L721–L723 | DOI | MR | Zbl
[12] Martín-Delgado M. A., “Planck distribution for a $q$-boson gas”, J. Phys. A: Math. Gen., 24 (1991), L1285–L1291 | DOI | MR | Zbl
[13] Lee C. R., Yu J.-P., “On $q$-deformed free-electron gases”, Phys. Lett. A, 164 (1992), 164–166 | DOI | MR
[14] Su G., Ge M.-L., “Thermodynamic characteristics of the $q$-deformed ideal Bose-gas”, Phys. Lett. A, 173 (1993), 17–20 | DOI | MR
[15] Tuszyński J. A., Rubin J. L., Meyer J., Kibler M., “Statistical mechanics of a $q$-deformed boson gaz”, Phys. Lett. A, 175 (1993), 173–177 | DOI | MR
[16] Man'ko V. I., Marmo G., Solimeno S., Zaccaria F., “Correlation functions of quantum $q$-oscillators”, Phys. Lett. A, 176 (1993), 173–175 ; hep-th/9303008 | DOI | MR
[17] Hsu R.-R., Lee C.-R., “Statistical distribution of gases which obey $q$-deformed commutation relations”, Phys. Lett. A, 180 (1993), 314–316 | DOI | MR
[18] Granovskii Ya. I., Zhedanov A. S., “Production of $q$-bosons by a classical current – an exactly solvable model”, Modern Phys. Lett. A, 8 (1993), 1029–1035 | DOI | MR
[19] Chaichian M., Felipe R. G., Montonen C., “Statistics of $q$-oscillators, quons and relations to fractional statistics”, J. Phys. A: Math. Gen., 26 (1993), 4017–4034 ; hep-th/9304111 | DOI | MR
[20] Gupta R. K., Bach C. T., Rosu H., “Planck distribution for a complex $q$-boson gas”, J. Phys. A: Math. Gen., 27 (1994), 1427–1433 | DOI | MR
[21] R.-Monteiro M. A., Roditi I., Rodrigues L. M. C. S., “Gamma-point transition in quantum $q$-gases”, Phys. Lett. A, 188 (1994), 11–15 | DOI | MR
[22] Gong R.-S., “Thermodynamic characteristics of the ($p,q$)-deformed ideal Bose-gas”, Phys. Lett. A, 199 (1995), 81–85 | DOI | MR | Zbl
[23] Daoud M., Kibler M.,, “Statistical-mechanics of $qp$-bosons in $D$-dimensions”, Phys. Lett. A, 206 (1995), 13–17 ; quant-ph/9512006 | DOI | MR | Zbl
[24] Witten E., “Gauge-theories, vertex models, and quantum groups”, Nuclear Phys. B, 330 (1990), 285–346 | DOI | MR
[25] Iwao S., “Knot and conformal field-theory approach in molecular and nuclear-physics”, Prog. Theor. Phys., 83 (1990), 363–367 | DOI | MR | Zbl
[26] Bonatsos D., Raychev P. P., Roussev R. P., Smirnov Yu. F., “Description of rotational molecular-spectra by the quantum algebra $\mathrm{SU}_q(2)$”, Chem. Phys. Lett., 175 (1990), 300–306 | DOI
[27] Chang Z., Guo H.-Y., Yan H., “The $q$-deformed oscillator model and the vibrational-spectra of diatomic-molecules”, Phys. Lett. A, 156 (1991), 192–196 | DOI | MR
[28] Chang Z., Yan H., “Diatomic-molecular spectrum in view of quantum group-theory”, Phys. Rev. A, 44 (1991), 7405–7413 | DOI
[29] Bonatsos D., Drenska S. B., Raychev P. P., Roussev R. P., Smirnov Yu. F., “Description of superdeformed bands by the quantum algebra $\mathrm{SU}_q(2)$”, J. Phys. G: Nucl. Part. Phys., 17 (1991), L67–L73 | DOI
[30] Bonatsos D., Raychev P. P., Faessler A., “Quantum algebraic description of vibrational molecular-spectra”, Chem. Phys. Lett., 178 (1991), 221–226 | DOI
[31] Bonatsos D., Argyres E. N., Raychev P. P., “$\mathrm{SU}_q(1,1)$ description of vibrational molecular-spectra”, J. Phys. A: Math. Gen., 24 (1991), L403–L408 | DOI | MR | Zbl
[32] Jenkovszky L., Kibler M., Mishchenko A., “Two-parameter quantum-deformed dual amplitude”, Modern Phys. Lett A, 10 (1995), 51–60 ; hep-th/9407071 | DOI | MR | Zbl
[33] Barbier R., Kibler M., “Application of a two-parameter quantum algebra to rotational spectroscopy of nuclei”, Rep. Math. Phys., 38 (1996), 221–226 ; nucl-th/9602015 | DOI | MR | Zbl
[34] Kundu A., “$q$-boson in quantum integrable systems”, SIGMA, 3 (2007), 040, 14 pp., ages ; nlin.SI/0701030 | MR | Zbl
[35] Rubakov V. A., Spiridonov V. P., “Parasupersymmetric quantum-mechanics”, Modern Phys. Lett. A, 3 (1988), 1337–1347 | DOI | MR
[36] Beckers J., Debergh N., “Parastatistics and supersymmetry in quantum-mechanics”, Nuclear Phys. B, 340 (1990), 767–776 | DOI | MR
[37] Debergh N., “On parasupersymmetric Hamiltonians and vector-mesons in magnetic-fields”, J. Phys. A: Math. Gen., 27 (1994), L213–L217 | DOI | Zbl
[38] Khare A., “Parasupersymmetry in quantum mechanics”, J. Math. Phys., 34 (1993), 1277–1294 | DOI | MR | Zbl
[39] Filippov A. T., Isaev A. P., Kurdikov A. B., “Paragrassmann extensions of the Virasoro algebra”, Internat. J. Modern Phys. A, 8 (1993), 4973–5003 ; hep-th/9212157 | DOI | MR | Zbl
[40] Durand S., “Fractional superspace formulation of generalized mechanics”, Modern Phys. Lett. A, 8 (1993), 2323–2334 ; hep-th/9305130 | DOI | MR | Zbl
[41] Klishevich S., Plyushchay T., “Supersymmetry of parafermions”, Modern Phys. Lett. A, 14 (1999), 2739–2752 ; hep-th/9905149 | DOI | MR
[42] Daoud M., Kibler M., “Fractional supersymmetric quantum mechanics as a set of replicas of ordinary supersymmetric quantum mechanics”, Phys. Lett. A, 321 (2004), 147–151 ; math-ph/0312019 | DOI | MR | Zbl
[43] Witten E., “Dynamical breaking of supersymmetry”, Nuclear Phys. B, 188 (1981), 513–554 | DOI
[44] Daoud M., Kibler M. R., “Fractional supersymmetry and hierarchy of shape invariant potentials”, J. Math. Phys., 47 (2006), 122108, 11 pp., ages ; quant-ph/0609017 | DOI | MR | Zbl
[45] Kibler M., Daoud M., “Variations on a theme of quons: I. A non standard basis for the Wigner–Racah algebra of the group $\mathrm{SU}(2)$”, Recent Res. Devel. Quantum Chem., 2 (2001), 91–99; physics/9712034
[46] Kibler M. R., “Representation theory and Wigner-Racah algebra of the group $\mathrm{SU}(2)$ in a noncanonical basis”, Collect. Czech. Chem. Commun., 70 (2005), 771–796 ; quant-ph/0504025 | DOI
[47] Kibler M. R., “Angular momentum and mutually unbiased bases”, Internat. J. Modern Phys. B, 20 (2006), 1792–1801 ; quant-ph/0510124 | DOI | MR | Zbl
[48] Kibler M. R., Planat M., “A $\mathrm{SU}(2)$ recipe for mutually unbiased bases”, Internat. J. Modern Phys. B, 20 (2006), 1802–1807 ; quant-ph/0601092 | DOI | MR | Zbl
[49] Albouy O., Kibler M. R., “$\mathrm{SU}_2$ nonstandard bases: case of mutually unbiased bases”, SIGMA, 3 (2007), 076, 22 pp., ages ; quant-ph/0701230 | MR | Zbl
[50] Ivanović I. D., “Geometrical description of quantum state determination”, J. Phys. A: Math. Gen., 14 (1981), 3241–3245 | DOI | MR
[51] Šťovíček P., Tolar J., “Quantum mechanics in a discrete space-time”, Rep. Math. Phys., 20 (1984), 157–170 | DOI | MR | Zbl
[52] Balian R., Itzykson C., “Observations sur la mécanique quantique finie”, C. R. Acad. Sci. (Paris), 303 (1986), 773–778 | MR | Zbl
[53] Wootters W. K., Fields B. D., “Optimal state-determination by mutually unbiased measurements”, Ann. Phys. (N.Y.), 191 (1989), 363–381 | DOI | MR
[54] Barnum H., MUBs and spherical 2-designs, quant-ph/0205155
[55] Bandyopadhyay S., Boykin P. O., Roychowdhury V., Vatan F., “A new proof for the existence of mutually unbiased bases”, Algorithmica, 34 (2002), 512–528 ; quant-ph/0103162 | DOI | MR | Zbl
[56] Chaturvedi S., “Aspects of mutually unbiased bases in odd-prime-power dimensions”, Phys. Rev. A, 65 (2002), 044301, 3 pp., ages ; quant-ph/0109003 | DOI
[57] Pittenger A. O., Rubin M. H., “Mutually unbiased bases, generalized spin matrices and separability”, Linear Algebra Appl., 390 (2004), 255–278 ; quant-ph/0308142 | DOI | MR | Zbl
[58] Klappenecker A., Rötteler M., “Constructions of mutually unbiased bases”, Finite fields and applications, Lect. Notes Comput. Sci., 2948, Springer, Berlin, 2004, 137–144 ; quant-ph/0309120 | MR | Zbl
[59] Bengtsson I., Three ways to look at mutually unbiased bases, quant-ph/0610216 | MR
[60] Berndt B. C., Evans R. J., Williams K. S., Gauss and Jacobi Sums, Wiley, New York, 1998 | MR | Zbl
[61] Zauner G., Quantendesigns: Grundzüge einer nichtcommutativen Designtheorie, Diploma Thesis, University of Wien, 1999
[62] Caves C. M., Fuchs C. A., Schack R., “Unknown quantum states: the quantum de Finetti representation”, J. Math. Phys., 43 (2002), 4537–4559 ; quant-ph/0104088 | DOI | MR | Zbl
[63] Renes J. M., Blume-Kohout R., Scott A. J., Caves C. M., “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45 (2004), 2171–2180 ; quant-ph/0310075 | DOI | MR | Zbl
[64] Appleby D. M., “Symmetric informationally complete-positive operator valued measures and the extended Clifford group”, J. Math. Phys., 46 (2005), 052107, 29 pp., ages ; quant-ph/0412001 | DOI | MR | Zbl
[65] Grassl M., “Tomography of quantum states in small dimensions”, Elec. Notes Discrete Math., 20 (2005), 151–164 | DOI | MR | Zbl
[66] Klappenecker A., Rötteler M., Mutually unbiased bases are complex projective 2-designs, quant-ph/0502031
[67] Klappenecker A., Rötteler M., Shparlinski I. E., Winterhof A., “On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states”, J. Math. Phys., 46 (2005), 082104, 17 pp., ages ; quant-ph/0503239 | DOI | MR | Zbl
[68] Weigert S., “Simple minimal informationally complete measurements for qudits”, Internat. J. Modern Phys. B, 20 (2006), 1942–1955 ; quant-ph/0508003 | DOI | MR | Zbl
[69] Albouy A., Kibler M. R., A unified approach to SIC-POVMs and MUBs, arXiv:0704.0511
[70] Znojil M., “PT-symmetric regularizations in supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37 (2004), 10209–10222 ; hep-th/0404145 | DOI | MR | Zbl
[71] Hall J. L., Rao A., SIC-POVMs exist in all dimensions, arXiv:0707.3002