@article{SIGMA_2007_3_a90,
author = {R. W. Jackiw},
title = {Dimensional {Reduction} of {Conformal} {Tensors} and {Einstein{\textendash}Weyl} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a90/}
}
R. W. Jackiw. Dimensional Reduction of Conformal Tensors and Einstein–Weyl Spaces. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a90/
[1] Bergmann P. G., Introduction to the theory of relativity, Prentice Hall, New York, 1942 | MR
[2] Grumiller D., Jackiw R., “Kaluza–Klein reduction of conformally flat spaces”, Intern. J. Modern Phys. D, 15 (2006), 2075–2094 ; math-ph/0609025 | DOI | MR
[3] Guralnik G., Iorio A., Jackiw R., Pi S. Y., “Dimensionally reduced gravitational Chern–Simons term and its kink”, Ann. Physics, 308 (2003), 222–236 ; hep-th/0305117 | DOI | MR | Zbl
[4] Grumiller D., Kummer W., “The classical solutions of the dimensionally reduced gravitational Chern–Simons theory”, Ann. Physics, 308 (2003), 211–221 ; hep-th/0306036 | DOI | MR | Zbl
[5] Cacciatori S., Calderelli M., Klemm D., Mansi D., “More on BPS solutions of $N=2$, $D=4$ gauged supergravity”, JHEP, 2004:7 (2004), 061, 31 pp., ages ; ; Bergamin L., Grumiller D., Iorio A., Nuñez C., “Chemistry of Chern–Simons supergravity: reduction to a BPS kink, oxidation to $M$-theory and thermodynamical aspects”, JHEP, 2004:11 (2004), 021, 40 pp., ages ; ; Sahoo B., Sen A., “BTZ black hole with Chern–Simons and higher derivative terms”, JHEP, 2006:7 (2006), 008, 11 pp., ages ; ; Sahoo B., Sen A., “$\alpha'$-correction to external dyonic black holes in heterofic string theory”, JHEP, 2007:1 (2007), 010, 18 pp., ages ; hep-th/0406238hep-th/0409273hep-th/0601228hep-th/0608182 | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[6] Eastwood M., Private communication
[7] Jones P., Tod K., “Minitwistor spaces and Einstein–Weyl spaces”, Classical Quantum Gravity, 2 (1985), 565–577 ; Tod K., “Compact 3-dimensional Einstein–Weyl structures”, J. Lond. Math. Soc. (2), 42 (1992), 341–351 ; Eastwood M., Tod K., “Local constraints on Einstein–Weyl geometries”, J. Reine Angew. Math., 491 (1997), 183–198 | DOI | MR | Zbl | DOI | MR | MR | Zbl