@article{SIGMA_2007_3_a88,
author = {Karl Hallowell and Andrew Waldron},
title = {The {Symmetric} {Tensor} {Lichnerowicz} {Algebra} and {a~Novel} {Associative} {Fourier{\textendash}Jacobi} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/}
}
TY - JOUR AU - Karl Hallowell AU - Andrew Waldron TI - The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/ LA - en ID - SIGMA_2007_3_a88 ER -
%0 Journal Article %A Karl Hallowell %A Andrew Waldron %T The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/ %G en %F SIGMA_2007_3_a88
Karl Hallowell; Andrew Waldron. The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/
[1] Alvarez-Gaume L., Witten E., “Gravitational anomalies”, Nuclear Phys. B, 234 (1984), 269–330 | DOI | MR
[2] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl
[3] Hallowell K., Waldron A., “Supersymmetric quantum mechanics and super-Lichnerowicz algebras”, Comm. Math. Phys., 278:3 (2008), 775–801 ; hep-th/0702033 | DOI | MR | Zbl
[4] Olver P. J., Differential hyperforms I, Report 82-101, University of Minnesota, 1982, 118 pp., ages; Olver P. J., “Invariant theory and differential equations”, Invariant Theory, Lecture Notes in Math., 1278, ed. S. Koh, Springer-Verlag, Berlin, 1987, 62–80 | MR
[5] Dubois-Violette M., Henneaux M., “Generalized cohomology for irreducible tensor fields of mixed Young symmetry type”, Lett. Math. Phys., 49 (1999), 245–252 ; ; Dubois-Violette M., Henneaux M., “Tensor fields of mixed Young symmetry type and $N$ complexes”, Comm. Math. Phys., 226 (2002), 393–418 ; math.QA/9907135math.QA/0110088 | DOI | MR | Zbl | DOI | MR | Zbl
[6] Edgar S. B., Senovilla J. M. M., “A weighted de Rham operator acting on arbitrary tensor fields and their local potentials”, J. Geom. Phys., 56 (2006), 2153–2162 | MR
[7] Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $\mathrm{GL}(D,\mathbb R)$. Duality and Poincaré lemma”, Comm. Math. Phys., 245 (2004), 27–67 ; ; Bekaert X., Boulanger N., “On geometric equations and duality for free higher spins”, Phys. Lett. B, 561 (2003), 183–190 ; ; Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $\mathrm{GL}(D,\mathbb R)$”, Comm. Math. Phys., 271 (2007), 723–773 ; hep-th/0208058hep-th/0301243hep-th/0606198 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[8] de Medeiros P., Hull C., “Geometric second order field equations for general tensor gauge fields”, JHEP, 2003:5 (2003), 019, 26 pp., ages ; ; de Medeiros P., Hull C., “Exotic tensor gauge theory and duality”, Comm. Math. Phys., 235 (2003), 255–273 ; hep-th/0303036hep-th/0208155 | DOI | MR | DOI | MR | Zbl
[9] Lichnerowicz A., “Propagateurs et commutateurs en relativité générale”, Inst. Hautes Études Sci. Publ. Math., no. 10 (1961), 56 pp., ages ; Lichnerowicz A., “Champs spinoriels et propagateurs en relativité générale”, Bull. Soc. Math. France, 92 (1964), 11–100 | MR | MR | Zbl
[10] Hallowell K., Waldron A., “Constant curvature algebras and higher spin action generating functions”, Nuclear Phys. B, 724 (2005), 453–486 ; hep-th/0505255 | DOI | MR | Zbl
[11] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029 ; ; Duval C., Ovsienko V., “Conformally equivariant quantum Hamiltonians”, Selecta Math. (N.S.), 7 (2001), 291–320 math.DG/9902032 | MR | Zbl | DOI | MR | Zbl
[12] Labastida J. M. F., “Massless particles in arbitrary representations of the Lorentz group”, Nuclear Phys. B, 322 (1989), 185–209 | DOI | MR
[13] Vasiliev M. A., “Equations of motion of interacting massless fields of all spins as a free differential algebra”, Phys. Lett. B, 209 (1988), 491–497 | DOI | MR
[14] Bekaert X., Cnockaert S., Iazeolla C., Vasiliev M. A., Nonlinear higher spin theories in various dimensions, hep-th/0503128
[15] Deser S., Waldron A., “Gauge invariances and phases of massive higher spins in (A)dS”, Phys. Rev. Lett., 87 (2001), 031601, 4 pp., ages ; ; Deser S., Waldron A., “Partial masslessness of higher spins in (A)dS”, Nuclear Phys. B, 607 (2001), 577–604 ; ; Deser S., Waldron A., “Stability of massive cosmological gravitons”, Phys. Lett. B, 508 (2001), 347–353 ; ; Deser S., Waldron A., “Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations”, Phys. Lett. B, 513 (2001), 137–141 ; hep-th/0102166hep-th/0103198hep-th/0103255hep-th/0105181 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl
[16] Deser A., Waldron A., Einstein tensors for mixed symmetry higher spins, in preparation
[17] Cherney D., Hallowell D., Hodge A., Shaukat A., Waldron A., Higher rank Fourier–Jacobi algebras, in preparation