The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Lichnerowicz's algebra of differential geometric operators acting on symmetric tensors can be obtained from generalized geodesic motion of an observer carrying a complex tangent vector. This relation is based upon quantizing the classical evolution equations, and identifying wavefunctions with sections of the symmetric tensor bundle and Noether charges with geometric operators. In general curved spaces these operators obey a deformation of the Fourier–Jacobi Lie algebra of $sp(2,\mathbb R)$. These results have already been generalized by the authors to arbitrary tensor and spinor bundles using supersymmetric quantum mechanical models and have also been applied to the theory of higher spin particles. These Proceedings review these results in their simplest, symmetric tensor setting. New results on a novel and extremely useful reformulation of the rank 2 deformation of the Fourier–Jacobi Lie algebra in terms of an associative algebra are also presented. This new algebra was originally motivated by studies of operator orderings in enveloping algebras. It provides a new method that is superior in many respects to common techniques such as Weyl or normal ordering.
Keywords: symmetric tensors; Fourier–Jacobi algebras; higher spins; operator orderings.
@article{SIGMA_2007_3_a88,
     author = {Karl Hallowell and Andrew Waldron},
     title = {The {Symmetric} {Tensor} {Lichnerowicz} {Algebra} and {a~Novel} {Associative} {Fourier{\textendash}Jacobi} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/}
}
TY  - JOUR
AU  - Karl Hallowell
AU  - Andrew Waldron
TI  - The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/
LA  - en
ID  - SIGMA_2007_3_a88
ER  - 
%0 Journal Article
%A Karl Hallowell
%A Andrew Waldron
%T The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/
%G en
%F SIGMA_2007_3_a88
Karl Hallowell; Andrew Waldron. The Symmetric Tensor Lichnerowicz Algebra and a Novel Associative Fourier–Jacobi Algebra. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a88/

[1] Alvarez-Gaume L., Witten E., “Gravitational anomalies”, Nuclear Phys. B, 234 (1984), 269–330 | DOI | MR

[2] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | MR | Zbl

[3] Hallowell K., Waldron A., “Supersymmetric quantum mechanics and super-Lichnerowicz algebras”, Comm. Math. Phys., 278:3 (2008), 775–801 ; hep-th/0702033 | DOI | MR | Zbl

[4] Olver P. J., Differential hyperforms I, Report 82-101, University of Minnesota, 1982, 118 pp., ages; Olver P. J., “Invariant theory and differential equations”, Invariant Theory, Lecture Notes in Math., 1278, ed. S. Koh, Springer-Verlag, Berlin, 1987, 62–80 | MR

[5] Dubois-Violette M., Henneaux M., “Generalized cohomology for irreducible tensor fields of mixed Young symmetry type”, Lett. Math. Phys., 49 (1999), 245–252 ; ; Dubois-Violette M., Henneaux M., “Tensor fields of mixed Young symmetry type and $N$ complexes”, Comm. Math. Phys., 226 (2002), 393–418 ; math.QA/9907135math.QA/0110088 | DOI | MR | Zbl | DOI | MR | Zbl

[6] Edgar S. B., Senovilla J. M. M., “A weighted de Rham operator acting on arbitrary tensor fields and their local potentials”, J. Geom. Phys., 56 (2006), 2153–2162 | MR

[7] Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $\mathrm{GL}(D,\mathbb R)$. Duality and Poincaré lemma”, Comm. Math. Phys., 245 (2004), 27–67 ; ; Bekaert X., Boulanger N., “On geometric equations and duality for free higher spins”, Phys. Lett. B, 561 (2003), 183–190 ; ; Bekaert X., Boulanger N., “Tensor gauge fields in arbitrary representations of $\mathrm{GL}(D,\mathbb R)$”, Comm. Math. Phys., 271 (2007), 723–773 ; hep-th/0208058hep-th/0301243hep-th/0606198 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] de Medeiros P., Hull C., “Geometric second order field equations for general tensor gauge fields”, JHEP, 2003:5 (2003), 019, 26 pp., ages ; ; de Medeiros P., Hull C., “Exotic tensor gauge theory and duality”, Comm. Math. Phys., 235 (2003), 255–273 ; hep-th/0303036hep-th/0208155 | DOI | MR | DOI | MR | Zbl

[9] Lichnerowicz A., “Propagateurs et commutateurs en relativité générale”, Inst. Hautes Études Sci. Publ. Math., no. 10 (1961), 56 pp., ages ; Lichnerowicz A., “Champs spinoriels et propagateurs en relativité générale”, Bull. Soc. Math. France, 92 (1964), 11–100 | MR | MR | Zbl

[10] Hallowell K., Waldron A., “Constant curvature algebras and higher spin action generating functions”, Nuclear Phys. B, 724 (2005), 453–486 ; hep-th/0505255 | DOI | MR | Zbl

[11] Duval C., Lecomte P., Ovsienko V., “Conformally equivariant quantization: existence and uniqueness”, Ann. Inst. Fourier (Grenoble), 49 (1999), 1999–2029 ; ; Duval C., Ovsienko V., “Conformally equivariant quantum Hamiltonians”, Selecta Math. (N.S.), 7 (2001), 291–320 math.DG/9902032 | MR | Zbl | DOI | MR | Zbl

[12] Labastida J. M. F., “Massless particles in arbitrary representations of the Lorentz group”, Nuclear Phys. B, 322 (1989), 185–209 | DOI | MR

[13] Vasiliev M. A., “Equations of motion of interacting massless fields of all spins as a free differential algebra”, Phys. Lett. B, 209 (1988), 491–497 | DOI | MR

[14] Bekaert X., Cnockaert S., Iazeolla C., Vasiliev M. A., Nonlinear higher spin theories in various dimensions, hep-th/0503128

[15] Deser S., Waldron A., “Gauge invariances and phases of massive higher spins in (A)dS”, Phys. Rev. Lett., 87 (2001), 031601, 4 pp., ages ; ; Deser S., Waldron A., “Partial masslessness of higher spins in (A)dS”, Nuclear Phys. B, 607 (2001), 577–604 ; ; Deser S., Waldron A., “Stability of massive cosmological gravitons”, Phys. Lett. B, 508 (2001), 347–353 ; ; Deser S., Waldron A., “Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations”, Phys. Lett. B, 513 (2001), 137–141 ; hep-th/0102166hep-th/0103198hep-th/0103255hep-th/0105181 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl

[16] Deser A., Waldron A., Einstein tensors for mixed symmetry higher spins, in preparation

[17] Cherney D., Hallowell D., Hodge A., Shaukat A., Waldron A., Higher rank Fourier–Jacobi algebras, in preparation