@article{SIGMA_2007_3_a86,
author = {Lukasz-Andrzej Glinka},
title = {Quantum {Information} from {Graviton-Matter} {Gas}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/}
}
Lukasz-Andrzej Glinka. Quantum Information from Graviton-Matter Gas. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/
[1] Mukhanov V., Physical foundations of cosmology, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[2] Bojowald M., “Universe scenarios from loop quantum cosmology”, Ann. Phys., 15 (2006), 326–341 ; astro-ph/0511557 | DOI | MR
[3] Glinka L. A., Pervushin V. N., “Hamiltonian unification of general relativity and standard model”, Concepts Phys., 5:1 (2008); arXiv:0705.0655
[4] Glinka L. A., Pervushin V. N., Higgs particle mass in cosmology talk on the Tenth European Meeting: From the Planck Scale to the Electroweak Scale, http://www.fuw.edu.pl/~susy/Planck07.html
[5] Zakharov A. F., Zakharova A. A., Pervushin V. N., Conformal cosmological model test with distant SNIa data, astro-ph/0611657
[6] Dirac P. A. M., “Fixation of coordinates in the Hamiltonian theory of gravitation”, Phys. Rev., 114 (1959), 924–930 ; Dirac P. A. M., “The theory of gravitation in Hamiltonian form”, Proc. Roy. Soc. Lond. A, 246 (1958), 333–343 ; Dirac P. A. M., “Generalized Hamiltonian dynamics”, Proc. Roy. Soc. Lond. A, 246 (1958), 326–332 ; Dirac P. A. M., “Generalized Hamiltonian dynamics”, Can. J. Math., 2 (1950), 129–148 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl
[7] Einstein A., The meaning of relativity, Pricenton University Press, Princeton, 1922 ; Einstein A., “A generalized theory of gravitation”, Rev. Mod. Phys., 20 (1948), 35–39 | Zbl | DOI | MR
[8] Friedmann A. A., “Über die Krümmung des Raumes”, Z. Phys., 10 (1922), 377–386 ; Friedmann A. A., “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes”, Z. Phys., 21 (1924), 326–332 | DOI | DOI | MR | Zbl
[9] Lemaître G.-H., “l'Univers en expansion”, Annales Soc. Sci. Brux. A, 53 (1933), 51–85
[10] Zelmanov A. L., “Orthometric form of monad formalism and its relations to chronometric invariants and kinemetric invariants”, Doklady Acad. Nauk USSR, 227:1 (1976), 78–81 | MR
[11] Barbashov B. M., Pervushin V. N., Zakharov A. F., Zinchuk V. A., “Hamiltonian cosmological perturbation theory”, Phys. Lett. B, 633 (2006), 458–462 ; hep-th/0501242 | DOI | MR
[12] Hilbert D., “Die Grundlagen der Physik”, Gott. Nachr., 27 (1915), 395–407
[13] Misner Ch. W., Thorne K. S., Wheeler J. A., Gravitation, Freeman and Company, San Francisco, 1973 | MR
[14] Weinberg S., Gravitation and cosmology. Principles and applications of the general theory of relativity, John Wiley Sons, New York, 1972 | Zbl
[15] Kolb E. W., Turner M. S., The early Universe, Addison-Wesley Publishing Company, 1988 | MR
[16] Wheeler J. A., “Superspace and the nature of quantum geometrodynamics”, Battelle Rencontres: 1967, Lectures in Mathematics and Physics, eds. C. M. DeWitt and J. A. Wheeler, New York, 1968, 242–307 | Zbl
[17] DeWitt B. S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl
[18] Peskin M. E., Schröder D. V., Introduction to quantum field theory, Addison-Wesley, 1995
[19] Bogoliubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., General principles of quantum field theory, Fizmatlit, Moscow, 2006 (in Russian)
[20] Białynicki-Birula I., Białynicka-Birula Z., Quantum electrodynamics, Pergamon, Oxford, 1975
[21] Pervushin V. N., Zinchuk V. A., “Bogoliubov's integrals of motion in quantum cosmology and gravity”, Phys. At. Nucl., 70 (2007), 593–600 | DOI
[22] Blaizot J.-P., Ripka G., Quantum theory of finite systems, Massachusetts Institute of Technology Press, 1986 | MR
[23] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford University Press, Oxford, 2002 | MR | Zbl
[24] Zubarev D. N., Morozov V. G., Röpke G., Statistical mechanics of nonequilibrium processes, Fizmatlit, Moscow, 2002 (in Russian)
[25] Alber G., Beth T., Horodecki M., Horodecki P., Horodecki R., Rötteler M., Weinfurter H., Werner R., Zeilinger A., Quantum information. An introduction to basic theoretical concepts and experiments, Springer-Verlag, Berlin – Heidelberg, 2001