Quantum Information from Graviton-Matter Gas
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present basics of conceptually new-type way for explaining of the origin, evolution and current physical properties of our Universe from the graviton-matter gas viewpoint. Quantization method for the Friedmann–Lemaître Universe based on the canonical Hamilton equations of motion is proposed and quantum information theory way to physics of the Universe is showed. The current contribution from the graviton-matter gas temperature in quintessence approximation is discussed.
Keywords: quantum cosmology; Friedmann Universe; nonequilibrium thermodynamics; quantum information in cosmology.
@article{SIGMA_2007_3_a86,
     author = {Lukasz-Andrzej Glinka},
     title = {Quantum {Information} from {Graviton-Matter} {Gas}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/}
}
TY  - JOUR
AU  - Lukasz-Andrzej Glinka
TI  - Quantum Information from Graviton-Matter Gas
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/
LA  - en
ID  - SIGMA_2007_3_a86
ER  - 
%0 Journal Article
%A Lukasz-Andrzej Glinka
%T Quantum Information from Graviton-Matter Gas
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/
%G en
%F SIGMA_2007_3_a86
Lukasz-Andrzej Glinka. Quantum Information from Graviton-Matter Gas. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a86/

[1] Mukhanov V., Physical foundations of cosmology, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[2] Bojowald M., “Universe scenarios from loop quantum cosmology”, Ann. Phys., 15 (2006), 326–341 ; astro-ph/0511557 | DOI | MR

[3] Glinka L. A., Pervushin V. N., “Hamiltonian unification of general relativity and standard model”, Concepts Phys., 5:1 (2008); arXiv:0705.0655

[4] Glinka L. A., Pervushin V. N., Higgs particle mass in cosmology talk on the Tenth European Meeting: From the Planck Scale to the Electroweak Scale, http://www.fuw.edu.pl/~susy/Planck07.html

[5] Zakharov A. F., Zakharova A. A., Pervushin V. N., Conformal cosmological model test with distant SNIa data, astro-ph/0611657

[6] Dirac P. A. M., “Fixation of coordinates in the Hamiltonian theory of gravitation”, Phys. Rev., 114 (1959), 924–930 ; Dirac P. A. M., “The theory of gravitation in Hamiltonian form”, Proc. Roy. Soc. Lond. A, 246 (1958), 333–343 ; Dirac P. A. M., “Generalized Hamiltonian dynamics”, Proc. Roy. Soc. Lond. A, 246 (1958), 326–332 ; Dirac P. A. M., “Generalized Hamiltonian dynamics”, Can. J. Math., 2 (1950), 129–148 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl

[7] Einstein A., The meaning of relativity, Pricenton University Press, Princeton, 1922 ; Einstein A., “A generalized theory of gravitation”, Rev. Mod. Phys., 20 (1948), 35–39 | Zbl | DOI | MR

[8] Friedmann A. A., “Über die Krümmung des Raumes”, Z. Phys., 10 (1922), 377–386 ; Friedmann A. A., “Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes”, Z. Phys., 21 (1924), 326–332 | DOI | DOI | MR | Zbl

[9] Lemaître G.-H., “l'Univers en expansion”, Annales Soc. Sci. Brux. A, 53 (1933), 51–85

[10] Zelmanov A. L., “Orthometric form of monad formalism and its relations to chronometric invariants and kinemetric invariants”, Doklady Acad. Nauk USSR, 227:1 (1976), 78–81 | MR

[11] Barbashov B. M., Pervushin V. N., Zakharov A. F., Zinchuk V. A., “Hamiltonian cosmological perturbation theory”, Phys. Lett. B, 633 (2006), 458–462 ; hep-th/0501242 | DOI | MR

[12] Hilbert D., “Die Grundlagen der Physik”, Gott. Nachr., 27 (1915), 395–407

[13] Misner Ch. W., Thorne K. S., Wheeler J. A., Gravitation, Freeman and Company, San Francisco, 1973 | MR

[14] Weinberg S., Gravitation and cosmology. Principles and applications of the general theory of relativity, John Wiley Sons, New York, 1972 | Zbl

[15] Kolb E. W., Turner M. S., The early Universe, Addison-Wesley Publishing Company, 1988 | MR

[16] Wheeler J. A., “Superspace and the nature of quantum geometrodynamics”, Battelle Rencontres: 1967, Lectures in Mathematics and Physics, eds. C. M. DeWitt and J. A. Wheeler, New York, 1968, 242–307 | Zbl

[17] DeWitt B. S., “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160 (1967), 1113–1148 | DOI | Zbl

[18] Peskin M. E., Schröder D. V., Introduction to quantum field theory, Addison-Wesley, 1995

[19] Bogoliubov N. N., Logunov A. A., Oksak A. I., Todorov I. T., General principles of quantum field theory, Fizmatlit, Moscow, 2006 (in Russian)

[20] Białynicki-Birula I., Białynicka-Birula Z., Quantum electrodynamics, Pergamon, Oxford, 1975

[21] Pervushin V. N., Zinchuk V. A., “Bogoliubov's integrals of motion in quantum cosmology and gravity”, Phys. At. Nucl., 70 (2007), 593–600 | DOI

[22] Blaizot J.-P., Ripka G., Quantum theory of finite systems, Massachusetts Institute of Technology Press, 1986 | MR

[23] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford University Press, Oxford, 2002 | MR | Zbl

[24] Zubarev D. N., Morozov V. G., Röpke G., Statistical mechanics of nonequilibrium processes, Fizmatlit, Moscow, 2002 (in Russian)

[25] Alber G., Beth T., Horodecki M., Horodecki P., Horodecki R., Rötteler M., Weinfurter H., Werner R., Zeilinger A., Quantum information. An introduction to basic theoretical concepts and experiments, Springer-Verlag, Berlin – Heidelberg, 2001