On Transformations of the Rabelo Equations
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study four distinct second-order nonlinear equations of Rabelo which describe pseudospherical surfaces. By transforming these equations to the constant-characteristic form we relate them to some well-studied integrable equations. Two of the Rabelo equations are found to be related to the sine-Gordon equation. The other two are transformed into a linear equation and the Liouville equation, and in this way their general solutions are obtained.
Keywords: nonlinear PDEs; transformations; integrability.
@article{SIGMA_2007_3_a85,
     author = {Anton Sakovich and Sergei Sakovich},
     title = {On {Transformations} of the {Rabelo} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a85/}
}
TY  - JOUR
AU  - Anton Sakovich
AU  - Sergei Sakovich
TI  - On Transformations of the Rabelo Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a85/
LA  - en
ID  - SIGMA_2007_3_a85
ER  - 
%0 Journal Article
%A Anton Sakovich
%A Sergei Sakovich
%T On Transformations of the Rabelo Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a85/
%G en
%F SIGMA_2007_3_a85
Anton Sakovich; Sergei Sakovich. On Transformations of the Rabelo Equations. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a85/

[1] Rabelo M. L., “On equations which describe pseudospherical surfaces”, Stud. Appl. Math., 81 (1989), 221–248 | MR | Zbl

[2] Beals R., Rabelo M., Tenenblat K., “Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations”, Stud. Appl. Math., 81 (1989), 125–151 | MR | Zbl

[3] Wadati M., Konno K., Ichikawa Y. H., “New integrable nonlinear evolution equations”, J. Phys. Soc. Japan, 47 (1979), 1698–1700 | DOI | MR

[4] Calogero F., “A solvable nonlinear wave equation”, Stud. Appl. Math., 70 (1984), 189–199 | MR | Zbl

[5] Pavlov M. V., “The Calogero equation and Liouville-type equations”, Theoret. and Math. Phys., 128:1 (2001), 927–932 ; nlin.SI/0101034 | DOI | MR | Zbl

[6] Schäfer T., Wayne C. E., “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196 (2004), 90–105 | DOI | MR | Zbl

[7] Sakovich A., Sakovich S., “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74 (2005), 239–241 ; nlin.SI/0409034 | DOI | MR | Zbl

[8] Sakovich A., Sakovich S., “Solitary wave solutions of the short pulse equation”, J. Phys. A: Math. Gen., 39 (2006), L361–L367 ; nlin.SI/0601019 | DOI | MR | Zbl

[9] Brunelli J. C., “The short pulse hierarchy”, J. Math. Phys., 46 (2005), 123507, 9 pp., ages ; nlin.SI/0601015 | DOI | MR | Zbl

[10] Brunelli J. C., “The bi-Hamiltonian structure of the short pulse equation”, Phys. Lett. A, 353 (2006), 475–478 ; nlin.SI/0601014 | DOI | MR | Zbl

[11] Matsuno Y., “Multiloop solutions and multibreather solutions of the short pulse model equation”, J. Phys. Soc. Japan, 76 (2007), 084003, 6 pp., ages | DOI | MR

[12] Parkes E. J., “Some periodic and solitary travelling-wave solutions of the short-pulse equation”, Chaos Solitons Fractals, 38:1 (2008), 154–159 ; doi:10.1016/j.chaos.2006.10.055 | DOI | MR | Zbl

[13] Olver P. J., Applications of Lie groups to differential equations, Springer, New York, 1986 | MR

[14] Chen H.-H., “General derivation of Bäcklund transformations from inverse scattering problems”, Phys. Rev. Lett., 33 (1974), 925–928 | DOI | MR