@article{SIGMA_2007_3_a84,
author = {Jonathan A. Cox},
title = {An {Additive} {Basis} for the {Chow} {Ring} of $\overline{\mathcal M}_{0,2}(\mathbb P^r,2)$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a84/}
}
Jonathan A. Cox. An Additive Basis for the Chow Ring of $\overline{\mathcal M}_{0,2}(\mathbb P^r,2)$. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a84/
[1] Behrend K., Manin Yu., “Stacks of stable maps and Gromov–Witten invariants”, Duke Math. J., 85 (1996), 1–60 ; alg-geom/9506023 | DOI | MR | Zbl
[2] Behrend K., O'Halloran A., “On the cohomology of stable map spaces”, Invent. Math., 154 (2003), 385–450 ; math.AG/0202288 | DOI | MR | Zbl
[3] Cox D. A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, 68, American Mathematical Society, Providence, Rhode Island, 1999 | MR | Zbl
[4] Cox J. A., “A presentation for the Chow ring of $\mathcal M_{0,2}(\mathbb P^r,2)$”, Comm. Algebra, 35:11 (2007), 3391–3414 ; math.AG/0504575 | DOI | MR | Zbl
[5] Danilov V. I., Khovanskiĭ A. G., “Newton polyhedra and an algorithm for calculating Hodge–Deligne numbers”, Math. USSR-Izv., 29:2 (1987), 279–298 | DOI | MR | Zbl
[6] Deligne P., “Théorie de Hodge, II”, Inst. Hautes Études Sci. Publ. Math., 40 (1971), 5–57 | DOI | MR | Zbl
[7] Fulton W., MacPherson R., “A compactification of configuration spaces”, Ann. of Math. (2), 139 (1994), 183–225 | DOI | MR | Zbl
[8] Getzler E., Mixed Hodge structures of configuration spaces, Preprint 96-61, Max-Planck-Institut für Mathematik, Bonn | MR
[9] Getzler E., Pandharipande R., The Poincaré polynomial of $M0$, unpublished
[10] Getzler E., Pandharipande R., “The Betti numbers of $\overline{\mathcal M}_{0,n}(r,d)$”, J. Algebraic Geom., 15 (2006), 709–732 ; math.AG/0502525 | MR | Zbl
[11] Keel S., “Intersection theory of moduli space of stable $n$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330 (1992), 545–574 | DOI | MR | Zbl
[12] Knutson D., $\lambda$-rings and the representation theory of the symmetric, Lecture Notes in Mathematics, 308, Springer-Verlag, Berlin – New York, 1973 | MR | Zbl
[13] Kontsevich M., “Enumeration of rational curves via torus actions”, The Moduli Space of Curves (Texel Island, 1994), Birkhäuser, Boston, 1995, 335–368 ; hep-th/9405035 | MR | Zbl
[14] Kontsevich M., Manin Yu., “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164 (1994), 525–562 ; hep-th/9402147 | DOI | MR | Zbl
[15] Kontsevich M., Manin Yu., “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196 (1998), 385–398 ; alg-geom/9708024 | DOI | MR | Zbl
[16] Macdonald I. G., Symmetric functions and Hall polynomials, Clarendon Press, Oxford, 1979 | MR | Zbl
[17] Mustaţǎ A., Mustaţǎ M. A., “Intermediate moduli spaces of stable maps”, Invent. Math., 167 (2007), 47–90 ; math.AG/0409569 | DOI | MR | Zbl
[18] Mustaţǎ A., Mustaţǎ M. A., “The Chow ring of $\overline{\mathcal M}_{0,m}(n,d)$”, J. Reine Angew. Math., 615 (2008), 93–119 ; math.AG/0507464 | MR | Zbl
[19] Oprea D., “Tautological classes on the moduli spaces of stable maps to $\mathbb P^r$ via torus actions”, Adv. Math., 207 (2006), 661–690 ; math.AG/0404284 | DOI | MR | Zbl
[20] Oprea D., “The tautological rings of the moduli spaces of stable maps to flag varieties”, J. Algebraic Geom., 15 (2006), 623–655 ; math.AG/0404280 | MR | Zbl
[21] Pandharipande R., “The Chow ring of the nonlinear Grassmannian”, J. Algebraic Geom., 7 (1998), 123–140 ; alg-geom/9604022 | MR | Zbl
[22] Smith L., “Homological algebra and the Eilenberg–Moore spectral sequence”, Trans. Amer. Math. Soc., 129 (1967), 58–93 | DOI | MR | Zbl