Monogenic Functions in Conformal Geometry
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition.
Keywords: Clifford analysis; monogenic functions; Dirac operator; conformal invariance.
@article{SIGMA_2007_3_a83,
     author = {Michael Eastwood and John Ryan},
     title = {Monogenic {Functions} in {Conformal} {Geometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/}
}
TY  - JOUR
AU  - Michael Eastwood
AU  - John Ryan
TI  - Monogenic Functions in Conformal Geometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/
LA  - en
ID  - SIGMA_2007_3_a83
ER  - 
%0 Journal Article
%A Michael Eastwood
%A John Ryan
%T Monogenic Functions in Conformal Geometry
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/
%G en
%F SIGMA_2007_3_a83
Michael Eastwood; John Ryan. Monogenic Functions in Conformal Geometry. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/

[1] Baston R. J., Eastwood M. G., The Penrose transform: its interaction with representation theory, Oxford University Press, 1989 | MR | Zbl

[2] Baston R. J., Eastwood M. G., “Invariant operators”, Twistors in Mathematics and Physics, London Math. Soc. Lecture Note Ser., 156, Cambridge University Press, 1990, 129–163 | MR

[3] Brackx F., Delanghe R., Sommen F., Clifford analysis, Research Notes in Math., 76, Pitman, 1982 | MR | Zbl

[4] Branson T. P., “Differential operators canonically associated to a conformal structure”, Math. Scand., 57 (1985), 293–345 | MR | Zbl

[5] Bureš J., “The Rarita–Schwinger operator and spherical monogenic forms”, Complex Variables Theory Appl., 43 (2000), 77–108 | MR | Zbl

[6] Bureš J., Sommen F., Souček V., Van Lancker P., “Symmetric analogues of Rarita–Schwinger equations”, Ann. Global Anal. Geom., 21 (2002), 215–240 | DOI | MR | Zbl

[7] Calderbank D. M. J., Dirac operators and Clifford analysis on manifolds with boundary, Preprint no. 53, Department of Mathematics and Computer Science, University of Southern Denmark, 1997; available at http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53

[8] Čap A., Slovák J., Souček V., “Invariant operators on manifolds with almost Hermitian symmetric structures. III. Standard operators”, Diff. Geom. Appl., 12 (2000), 51–84 ; math.DG/9812023 | DOI | MR | Zbl

[9] Eastwood M. G., Graham C. R., “Invariants of conformal densities”, Duke Math. J., 63 (1991), 633–671 | DOI | MR | Zbl

[10] Fegan H. D., “Conformally invariant first order differential operators”, Quart. J. Math. Oxford (2), 27 (1976), 371–378 | DOI | MR | Zbl

[11] Gover A. R., Hirachi K., “Conformally invariant powers of the Laplacian – a complete nonexistence theorem”, J. Amer. Math. Soc., 17 (2004), 389–405 ; math.DG/0304082 | DOI | MR | Zbl

[12] Graham C. R., “Conformally invariant powers of the Laplacian II: nonexistence”, J. London Math. Soc. (2), 46 (1992), 566–576 | DOI | MR | Zbl

[13] Harvey F. R., Spinors and calibrations, Academic Press, 1990 | MR | Zbl

[14] Kosmann-Schwarzbach Y., “Propriétés des dérivations de l'algèbre des tenseurs-spineurs”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A355–A358

[15] Kraußhar R. S., Ryan J., “Clifford and harmonic analysis on cylinders and tori”, Rev. Mat. Iberoamericana, 21 (2005), 87–110 | MR | Zbl

[16] Kraußhar R. S., Ryan J., “Some conformally flat spin manifolds, Dirac operators and automorphic forms”, J. Math. Anal. Appl., 325 (2007), 359–376 ; math.AP/0212086 | DOI | MR | Zbl

[17] Penrose R., Rindler W., Spinors and space-time, Vol. 1, Cambridge University Press, 1984 | MR | Zbl

[18] Woodhouse N. M. J., Geometric quantization, Oxford University Press, 1980 | MR | Zbl