@article{SIGMA_2007_3_a83,
author = {Michael Eastwood and John Ryan},
title = {Monogenic {Functions} in {Conformal} {Geometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/}
}
Michael Eastwood; John Ryan. Monogenic Functions in Conformal Geometry. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a83/
[1] Baston R. J., Eastwood M. G., The Penrose transform: its interaction with representation theory, Oxford University Press, 1989 | MR | Zbl
[2] Baston R. J., Eastwood M. G., “Invariant operators”, Twistors in Mathematics and Physics, London Math. Soc. Lecture Note Ser., 156, Cambridge University Press, 1990, 129–163 | MR
[3] Brackx F., Delanghe R., Sommen F., Clifford analysis, Research Notes in Math., 76, Pitman, 1982 | MR | Zbl
[4] Branson T. P., “Differential operators canonically associated to a conformal structure”, Math. Scand., 57 (1985), 293–345 | MR | Zbl
[5] Bureš J., “The Rarita–Schwinger operator and spherical monogenic forms”, Complex Variables Theory Appl., 43 (2000), 77–108 | MR | Zbl
[6] Bureš J., Sommen F., Souček V., Van Lancker P., “Symmetric analogues of Rarita–Schwinger equations”, Ann. Global Anal. Geom., 21 (2002), 215–240 | DOI | MR | Zbl
[7] Calderbank D. M. J., Dirac operators and Clifford analysis on manifolds with boundary, Preprint no. 53, Department of Mathematics and Computer Science, University of Southern Denmark, 1997; available at http://bib.mathematics.dk/preprint.php?lang=en&id=IMADA-PP-1997-53
[8] Čap A., Slovák J., Souček V., “Invariant operators on manifolds with almost Hermitian symmetric structures. III. Standard operators”, Diff. Geom. Appl., 12 (2000), 51–84 ; math.DG/9812023 | DOI | MR | Zbl
[9] Eastwood M. G., Graham C. R., “Invariants of conformal densities”, Duke Math. J., 63 (1991), 633–671 | DOI | MR | Zbl
[10] Fegan H. D., “Conformally invariant first order differential operators”, Quart. J. Math. Oxford (2), 27 (1976), 371–378 | DOI | MR | Zbl
[11] Gover A. R., Hirachi K., “Conformally invariant powers of the Laplacian – a complete nonexistence theorem”, J. Amer. Math. Soc., 17 (2004), 389–405 ; math.DG/0304082 | DOI | MR | Zbl
[12] Graham C. R., “Conformally invariant powers of the Laplacian II: nonexistence”, J. London Math. Soc. (2), 46 (1992), 566–576 | DOI | MR | Zbl
[13] Harvey F. R., Spinors and calibrations, Academic Press, 1990 | MR | Zbl
[14] Kosmann-Schwarzbach Y., “Propriétés des dérivations de l'algèbre des tenseurs-spineurs”, C. R. Acad. Sci. Paris Sér. A-B, 264 (1967), A355–A358
[15] Kraußhar R. S., Ryan J., “Clifford and harmonic analysis on cylinders and tori”, Rev. Mat. Iberoamericana, 21 (2005), 87–110 | MR | Zbl
[16] Kraußhar R. S., Ryan J., “Some conformally flat spin manifolds, Dirac operators and automorphic forms”, J. Math. Anal. Appl., 325 (2007), 359–376 ; math.AP/0212086 | DOI | MR | Zbl
[17] Penrose R., Rindler W., Spinors and space-time, Vol. 1, Cambridge University Press, 1984 | MR | Zbl
[18] Woodhouse N. M. J., Geometric quantization, Oxford University Press, 1980 | MR | Zbl