Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The 2007 Midwest Geometry Conference included a panel discussion devoted to open problems and the general direction of future research in fields related to the main themes of the conference. This paper summarizes the comments made during the panel discussion.
Keywords: determinants; differential complexes; differential geometry; Einstein metrics; GJMS operators; global invariants; heat kernel; Kähler metrics; $Q$-curvature; Sobolev inequalities.
@article{SIGMA_2007_3_a80,
     author = {Edited by Lawrence J. Peterson},
     title = {Future {Directions} of {Research} in {Geometry:} {A~Summary} of the {Panel} {Discussion} at the 2007 {Midwest} {Geometry} {Conference}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/}
}
TY  - JOUR
AU  - Edited by Lawrence J. Peterson
TI  - Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/
LA  - en
ID  - SIGMA_2007_3_a80
ER  - 
%0 Journal Article
%A Edited by Lawrence J. Peterson
%T Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/
%G en
%F SIGMA_2007_3_a80
Edited by Lawrence J. Peterson. Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/

[1] Chen B.-Y., Wei S. W., “Geometry of submanifolds of warped product Riemannian manifolds $I\times_f S^{m-1}(k)$ and applications to $p$-harmonic and quasiregular mappings”, J. of Geometry, 91:1–2 (2009), 21–42 | DOI | MR

[2] Chen X., LeBrun C., Weber B., On conformally Kähler, Einstein manifolds, arXiv:0705.0710 | MR

[3] Colesanti A., Salani P., “The Brunn–Minkowski inequality for $p$-capacity of convex bodies”, Math. Ann., 327 (2003), 459–479 | DOI | MR | Zbl

[4] Derdziński A., “Self-dual Kähler manifolds and Einstein manifolds of dimension four”, Comp. Math., 49 (1983), 405–433 | MR | Zbl

[5] Deser S., “Conformal anomalies revisited: closed form effective actions in $D\geq 4$”, Nuclear Phys. B Proc. Suppl., 88 (2000), 204–209 | DOI | MR

[6] Graham C. R., Jenne R., Mason L. J., Sparling G. A. J., “Conformally invariant powers of the Laplacian, I: existence”, J. London Math. Soc. (2), 46 (1992), 557–565 | DOI | MR | Zbl

[7] Guillarmou C., Generalized Krein formula and determinants for even dimensional Poincaré–Einstein manifolds, math.SP/0512173

[8] Patterson S. J., Perry P. A., “The divisor of Selberg's zeta function for Kleinian groups”, Appendix A by Charles Epstein, Duke Math. J., 106 (2001), 321–390 | DOI | MR | Zbl

[9] Seshadri N., Some notes on analytic torsion of the Rumin complex on contact manifolds, arXiv:0704.1982

[10] Troyanov M., “Parabolicity of manifolds”, Siberian Adv. Math., 9 (1999), 125–150 | MR | Zbl

[11] Vogan D. A. Jr., Wallach N. R., “Intertwining operators for real reductive groups”, Adv. Math., 82 (1990), 203–243 | DOI | MR | Zbl