@article{SIGMA_2007_3_a80,
author = {Edited by Lawrence J. Peterson},
title = {Future {Directions} of {Research} in {Geometry:} {A~Summary} of the {Panel} {Discussion} at the 2007 {Midwest} {Geometry} {Conference}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/}
}
TY - JOUR AU - Edited by Lawrence J. Peterson TI - Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference JO - Symmetry, integrability and geometry: methods and applications PY - 2007 VL - 3 UR - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/ LA - en ID - SIGMA_2007_3_a80 ER -
%0 Journal Article %A Edited by Lawrence J. Peterson %T Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference %J Symmetry, integrability and geometry: methods and applications %D 2007 %V 3 %U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/ %G en %F SIGMA_2007_3_a80
Edited by Lawrence J. Peterson. Future Directions of Research in Geometry: A Summary of the Panel Discussion at the 2007 Midwest Geometry Conference. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a80/
[1] Chen B.-Y., Wei S. W., “Geometry of submanifolds of warped product Riemannian manifolds $I\times_f S^{m-1}(k)$ and applications to $p$-harmonic and quasiregular mappings”, J. of Geometry, 91:1–2 (2009), 21–42 | DOI | MR
[2] Chen X., LeBrun C., Weber B., On conformally Kähler, Einstein manifolds, arXiv:0705.0710 | MR
[3] Colesanti A., Salani P., “The Brunn–Minkowski inequality for $p$-capacity of convex bodies”, Math. Ann., 327 (2003), 459–479 | DOI | MR | Zbl
[4] Derdziński A., “Self-dual Kähler manifolds and Einstein manifolds of dimension four”, Comp. Math., 49 (1983), 405–433 | MR | Zbl
[5] Deser S., “Conformal anomalies revisited: closed form effective actions in $D\geq 4$”, Nuclear Phys. B Proc. Suppl., 88 (2000), 204–209 | DOI | MR
[6] Graham C. R., Jenne R., Mason L. J., Sparling G. A. J., “Conformally invariant powers of the Laplacian, I: existence”, J. London Math. Soc. (2), 46 (1992), 557–565 | DOI | MR | Zbl
[7] Guillarmou C., Generalized Krein formula and determinants for even dimensional Poincaré–Einstein manifolds, math.SP/0512173
[8] Patterson S. J., Perry P. A., “The divisor of Selberg's zeta function for Kleinian groups”, Appendix A by Charles Epstein, Duke Math. J., 106 (2001), 321–390 | DOI | MR | Zbl
[9] Seshadri N., Some notes on analytic torsion of the Rumin complex on contact manifolds, arXiv:0704.1982
[10] Troyanov M., “Parabolicity of manifolds”, Siberian Adv. Math., 9 (1999), 125–150 | MR | Zbl
[11] Vogan D. A. Jr., Wallach N. R., “Intertwining operators for real reductive groups”, Adv. Math., 82 (1990), 203–243 | DOI | MR | Zbl