Bäcklund Transformation for the BC-Type Toda Lattice
Symmetry, integrability and geometry: methods and applications, Tome 3 (2007) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an integrable case of $n$-particle Toda lattice: open chain with boundary terms containing 4 parameters. For this model we construct a Bäcklund transformationand prove its basic properties: canonicity, commutativity and spectrality. The Bäcklund transformation can be also viewed as a discretized time dynamics. Two Lax matrices are used: of order 2 and of order $2n+2$, which are mutually dual, sharing the same spectral curve.
Keywords: Bäcklund transformation; Toda lattice; integrability; boundary conditions; classical Lie algebras.
@article{SIGMA_2007_3_a79,
     author = {Vadim Kuznetsov and Evgeny Sklyanin},
     title = {B\"acklund {Transformation} for the {BC-Type} {Toda} {Lattice}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2007},
     volume = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a79/}
}
TY  - JOUR
AU  - Vadim Kuznetsov
AU  - Evgeny Sklyanin
TI  - Bäcklund Transformation for the BC-Type Toda Lattice
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2007
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a79/
LA  - en
ID  - SIGMA_2007_3_a79
ER  - 
%0 Journal Article
%A Vadim Kuznetsov
%A Evgeny Sklyanin
%T Bäcklund Transformation for the BC-Type Toda Lattice
%J Symmetry, integrability and geometry: methods and applications
%D 2007
%V 3
%U http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a79/
%G en
%F SIGMA_2007_3_a79
Vadim Kuznetsov; Evgeny Sklyanin. Bäcklund Transformation for the BC-Type Toda Lattice. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a79/

[1] Bogoyavlensky O. I., “On perturbations of the periodic Toda lattice”, Comm. Math. Phys., 51 (1976), 201–209 | DOI | MR

[2] Adler M., van Moerbeke P., “Kowalewski's asymptotic method, Kac–Moody Lie algebras and regularization”, Comm. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[3] Funct. Anal. Appl., 21 (1987), 164–166 | DOI | MR | Zbl

[4] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl

[5] Inozemtsev V. I., “The finite Toda lattices”, Comm. Math. Phys., 121 (1989), 629–638 | DOI | MR | Zbl

[6] Math. USSR-Izv., 34 (1990), 555–574 | DOI | MR | Zbl | Zbl

[7] Olshanetsky M. A., Perelomov M. A., Reyman A. G., Semenov-Tyan-Shansky M. A., “Integrable systems. II”, Dynamical Systems. VII. Integrable Systems, Nonholonomic Dynamical Systems, Encyclopaedia of Mathematical Sciences, 16, Springer-Verlag, Berlin, 1994 | MR

[8] Reyman A. G., Semenov-Tian-Shansky M. A., Integrable systems, Institute of Computer Studies, Moscow, 2003 (in Russian)

[9] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 ; solv-int/9711010 | DOI | MR | Zbl

[10] Sklyanin E. K., “Bäcklund transformations and Baxter's $Q$-operator”, Integrable Systems: from Classical to Quantum (1999, Montreal), CRM Proc. Lecture Notes, 26, Amer. Math. Soc., Providence, RI, 2000, 227–250 ; nlin.SI/0009009 | MR | Zbl

[11] Faddeev L. D., Takhtajan L. A., Hamiltonian methods in the theory of solitons, Springer, Berlin, 1987 | MR | Zbl

[12] Derkachov S. E., Manashov A. N., “Factorization of the transfer matrices for the quantum $sl(2)$ spin chains and Baxter equation”, J. Phys. A: Math. Gen., 39 (2006), 4147–4159 ; nlin.SI/0512047 | DOI | MR | Zbl

[13] Veselov A. P., “Integrable maps”, Russian Math. Surveys, 46:5 (1991), 1–51 | DOI | MR | Zbl

[14] Suris Yu. B., The problem of integrable discretization: Hamiltonian approach, Birkhäuser, Boston, 2003 | MR | Zbl

[15] Kuznetsov V. B., Petrera M., Ragnisco O., “Separation of variables and Bäcklund transformations for the symmetric Lagrange top”, J. Phys. A: Math. Gen., 37 (2004), 8495–8512 ; nlin.SI/0403028 | DOI | MR | Zbl

[16] Adams M. R., Harnad J., Hurtubise J., “Dual moment maps to loop algebras”, Lett. Math. Phys., 20 (1990), 294–308 | DOI

[17] van Moerbeke P., “The spectrum of Jacobi matrices”, Invent. Math., 37 (1976), 45–81 | DOI | MR | Zbl

[18] Adler M., van Moerbeke P., “Toda–Darboux maps and vertex operators”, Int. Math. Res. Not., 10 (1998), 489–511 ; solv-int/9712016 | DOI | MR | Zbl

[19] Kuznetsov V. B., Salerno M., Sklyanin E. K., “Quantum Bäcklund transformations for DST dimer model”, J. Phys. A: Math. Gen., 33 (2000), 171–189 ; solv-int/9908002 | DOI | MR | Zbl

[20] Kuznetsov V. B., “Separation of variables for the $D_n$ type periodic Toda lattice”, J. Phys. A: Math. Gen., 30 (1997), 2127–2138 ; solv-int/9701009 | DOI | MR | Zbl

[21] Pasquier V., Gaudin M., “The periodic Toda chain and a matrix generalization of the Bessel function recursion relation”, J. Phys. A: Math. Gen., 25 (1992), 5243–5252 | DOI | MR | Zbl

[22] Gerasimov A., Lebedev D., Oblezin S., New integral representations of Whittaker functions for classical Lie groups, arXiv:0705.2886