@article{SIGMA_2007_3_a78,
author = {Alan S. McRae},
title = {Clifford {Algebras} and {Possible} {Kinematics}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2007},
volume = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a78/}
}
Alan S. McRae. Clifford Algebras and Possible Kinematics. Symmetry, integrability and geometry: methods and applications, Tome 3 (2007). http://geodesic.mathdoc.fr/item/SIGMA_2007_3_a78/
[1] Bacry H., Lévy-Leblond J., “Possible kinematics”, J. Math. Phys., 9 (1968), 1605–1614 | DOI | MR | Zbl
[2] Ballesteros A., Herranz F. J., “Superintegrability on three-dimensional Riemannian and relativistic spaces of constant curvature”, SIGMA, 2 (2006), 010, 22 pp., ages ; math-ph/0512084 | MR | Zbl
[3] Brannan D. A., Esplen M. F., Gray J. J., Geometry, Cambridge University Press, Cambridge, 1999 | MR
[4] Cannata R., Catoni F., Catoni V., Zampetti P., “Two-dimensional hypercomplex numbers and related trigonometries and geometries”, Adv. Appl. Clifford Algebr., 14 (2004), 47–68 | DOI | MR | Zbl
[5] Gray J. J., Ideas of space, 2nd ed., Clarendon Press, Oxford, 1979 | MR | Zbl
[6] Gromov N., “The Jordan–Schwinger representations of Cayley–Klein groups. I. The orthogonal groups”, J. Math. Phys., 31 (1990), 1047–1053 | DOI | MR | Zbl
[7] Gromov N., “Transitions: contractions and analytic continuations of the Cayley–Klein groups”, Internat. J. Theoret. Phys., 29 (1990), 607–620 | DOI | MR | Zbl
[8] Gromov N., “The Gelfand–Tsetlin representations of the orthogonal Cayley–Klein algebras”, J. Math. Phys., 33 (1992), 1363–1373 | DOI | MR | Zbl
[9] Gromov N. A., Moskaliuk S. S., “Special orthogonal groups in Cayley–Klein spaces”, Hadronic J., 18 (1995), 451–483 | MR | Zbl
[10] Gromov N. A., Moskaliuk S. S., “Classification of transitions between groups in Cayley–Klein spaces and kinematic groups”, Hadronic J., 19 (1996), 407–435 | MR | Zbl
[11] Fjelstad P., Gal S. G., “Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers”, Adv. Appl. Clifford Algebr., 11 (2001), 81–107 | DOI | MR | Zbl
[12] Harkin A. A., Harkin J. B., “Geometry of generalized complex numbers”, Math. Mag., 77 (2004), 118–129 | MR | Zbl
[13] Herranz F. J., Ortega R., Santander M., “Homogeneous phase spaces: the Cayley–Klein framework”, Mem. Real Acad. Cienc. Exact. Fís. Natur. Madrid, 32 (1998), 59–84 ; physics/9702030 | MR | Zbl
[14] Herranz F. J., Ortega R., Santander M., “Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry”, J. Phys. A: Math. Gen., 33 (2000), 4525–4551 ; math-ph/9910041 | DOI | MR | Zbl
[15] Herranz F. J., Santander M., “Conformal symmetries of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6601–6618 ; math-ph/0110019 | DOI | MR | Zbl
[16] Herranz F. J., Santander M., “Conformal compactification of spacetimes”, J. Phys. A: Math. Gen., 35 (2002), 6619–6629 ; math-ph/0110019 | DOI | MR | Zbl
[17] Inonu E., Wigner E. P., “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 510–524 | DOI | MR
[18] Katz V., A history of mathematics: an introduction, 2nd ed., Addison Wesley Longman, Inc., New York, 1998 | MR | Zbl
[19] Klein F., “Über die sogenannte nicht-Euklidische geometrie”, Gesammelte Math. Abh., I (1921), 254–305; 311–343; 344–350; 353–383
[20] McRae A. S., “The Gauss-Bonnet theorem for Cayley–Klein geometries of dimension two”, New York J. Math., 12 (2006), 143–155 | MR | Zbl
[21] Penrose R., The road to reality, Alfred A. Knopf, New York, 2005 | MR
[22] Pimenov R. I., “Unified axiomatics of spaces with the maximum group of motions”, Litovsk. Mat. Sb., 5 (1965), 457–486 | MR | Zbl
[23] Fernández Sanjuan M. A., “Group contraction and the nine Cayley–Klein geometries”, Internat. J. Theoret. Phys., 23 (1984), 1–14 | DOI | MR | Zbl
[24] Santander M., “The Hyperbolic-AntiDeSitter-DeSitter triality”, Pub. de la RSME, 5 (2005), 247–260
[25] Sattinger D. H., Weaver O. L., Lie groups and algebras with applications to physics, geometry, and mechanics, Springer-Verlag, New York, 1986 | MR | Zbl
[26] Sommerville D. M. Y., “Classification of geometries with projective metrics”, Proc. Edinb. Math. Soc., 28 (1910–1911), 25–41 | DOI | Zbl
[27] Walker S., “The non-Euclidean style of Minkowskian relativity”, The Symbolic Universe, ed. J. Gray, Oxford University Press, Oxford, 1999, 91–127 | MR
[28] Yaglom I. M., A simple non-Euclidean geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity,, Heidelberg Science Library. Translated from the Russian by A. Shenitzer, with the editorial assistance of B. Gordon, Springer-Verlag, New York – Heidelberg, 1979 | MR | Zbl